Skip to main content
Log in

Testing for spatial association of qualitative data using symbolic dynamics

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

Qualitative spatial variables are important in many fields of research. However, unlike the decades-worth of research devoted to the spatial association of quantitative variables, the exploratory analysis of spatial qualitative variables is relatively less developed. The objective of the present paper is to propose a new test (Q) for spatial independence. This is a simple, consistent, and powerful statistic for qualitative spatial independence that we develop using concepts from symbolic dynamics and symbolic entropy. The Q test can be used to detect, given a spatial distribution of events, patterns of spatial association of qualitative variables in a wide variety of settings. In order to enable hypothesis testing, we give a standard asymptotic distribution of an affine transformation of the symbolic entropy under the null hypothesis of independence in the spatial qualitative process. We include numerical experiments to demonstrate the finite sample behaviour of the test, and show its application by means of an empirical example that explores the spatial association of fast food establishments in the Greater Toronto Area in Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anselin L (1988) Spatial econometrics: methods and models. Kluwer, Dordrecht

    Google Scholar 

  • Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27(2):93–115

    Google Scholar 

  • Austin SB, Melly SJ, Sanchez BN, Patel A, Buka S, Gortmaker SL (2005) Clustering of fast-food restaurants around schools: a novel application of spatial statistics to the study of food environments. Am J Public Health 95(9):1575–1581

    Article  Google Scholar 

  • Bailey TC, Gatrell AC (1995) Interactive spatial data analysis. Addison Wesley Longman, Essex

    Google Scholar 

  • Bell N, Schuurman N, Hameed SM (2008) Are injuries spatially related? Join-count spatial autocorrelation for small-area injury analysis. Inj Prev 14(6):346–353

    Article  Google Scholar 

  • Bhat CR, Sener IN (2009) A copula-based closed-form binary logit choice model for accommodating spatial correlation across observational units. J Geograph Syst 11(3):243–272

    Article  Google Scholar 

  • Boots B (2003) Developing local measures of spatial association for categorical variables. J Geograph Syst 5(2):139–160

    Article  Google Scholar 

  • Chakir R, Parent O (2009) Determinants of land use changes: a spatial multinomial probit approach. Pap Reg Sci 88(2):327–344

    Article  Google Scholar 

  • Chuang KS, Huang HK (1992) Assessment of noise in a digital image using the join-count statistic and the Moran test. Phys Med Biol 37(2):357–369

    Article  Google Scholar 

  • Cliff AD, Ord JK (1973) Spatial autocorrelation. Pion, London

    Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial processes: models and applications. Pion, London

    Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Dacey MF (1968) A review on measures of contiguity for two and k-color maps. In: Berry BJL, Marble DF (eds) Spatial analysis: a reader in statistical geography. Prentice Hall, Englewood Cliffs, pp 479–495

    Google Scholar 

  • Dejong PD, Debree J (1995) Analysis of the spatial-distribution of rust-infected leek plants with the black-white join-count statistic. Eur J Plant Pathol 101(2):133–137

    Article  Google Scholar 

  • Dubin R (1995) Estimating logit models with spatial dependence. In: Anselin L, Florax RJGM (eds) New directions in spatial econometrics. Springer, Berlin, pp 229–242

    Google Scholar 

  • Epperson BK, AlvarezBuylla ER (1997) Limited seed dispersal and genetic structure in life stages of Cecropia obtusifolia. Evolution 51(1):275–282

    Article  Google Scholar 

  • Farber S, Páez A, Volz E (2009) Topology and dependency tests in spatial and network autoregressive models. Geogr Anal 41(2):158–180

    Article  Google Scholar 

  • Geary RC (1954) The contiguity ratio and statistical mapping. Inc Stat 5(3):115–145

    Google Scholar 

  • Getis A (2008) A history of the concept of spatial autocorrelation: a geographer’s perspective. Geogr Anal 40(3):297–309

    Article  Google Scholar 

  • Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 25(3):189–206

    Google Scholar 

  • Ghent AW, Warner RE, Mankin PC (1992) Accurate counts for Moran joins tests in ecological studies. Am Midl Nat 128(2):366–376

    Article  Google Scholar 

  • Goldsborough LG (1994) Heterogeneous spatial distribution of periphytic diatoms on vertical artificial substrata. J N Am Benthol Soc 13(2):223–236

    Article  Google Scholar 

  • Griffith DA (1988) Advanced spatial statistics: special topics in the exploration of quantitative spatial data series. Kluwer, Dordrecht

    Google Scholar 

  • Griffith DA (1999) Statistical and mathematical sources of regional science theory: map pattern analysis as an example. Pap Reg Sci 78(1):21–45

    Article  Google Scholar 

  • Haining RP (1978) Spatial model for high-plains agriculture. Ann Assoc Am Geogr 68(4):493–504

    Article  Google Scholar 

  • Haining R (1990) Spatial data analysis in the social and environmental sciences. Cambridge University Press, Cambridge

    Google Scholar 

  • Hao B, Zheng W (1998) Applied symbolic dynamics and chaos. World Scientific, Singapore

    Google Scholar 

  • Hewes L, Schmieding AC (1956) Risk in the Central Great Plains: geographical patterns of wheat failure in Nebraska, 1931–1952. Geogr Rev 46(3):375–387

    Google Scholar 

  • Krishna Iyer PVA (1949) The first and second moments of some probability distributions arising from points on a lattice, and their applications. Biometrika 36(1/2):135–141

    Article  Google Scholar 

  • Lehman EL (1986) Testing statistical hypothesis. Wiley, New York

    Google Scholar 

  • Mannelli A, Sotgia S, Patta C, Oggiano A, Carboni A, Cossu P, Laddomada A (1998) Temporal and spatial patterns of African swine fever in Sardinia. Prev Vet Med 35(4):297–306

    Article  Google Scholar 

  • McMillen DP (1992) Probit with spatial autocorrelation. J Reg Sci 32(3):335–348

    Article  Google Scholar 

  • Miller HJ (2004) Tobler’s first law and spatial analysis. Ann Assoc Am Geogr 94(2):284–289

    Article  Google Scholar 

  • Moran PAP (1948) The interpretation of statistical maps. J R Stat Soc Series B Stat Methodol 10(2):243–251

    Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37(1/2):17–23

    Article  Google Scholar 

  • Páez A (2006) Exploring contextual variations in land use and transport analysis using a probit model with geographical weights. J Transp Geogr 14(3):167–176

    Article  Google Scholar 

  • Páez A, Scott DM, Volz E (2008) Weight matrices for social influence analysis: an investigation of measurement errors and their effect on model identification and estimation quality. Soc Netw 30(4):309–317

    Article  Google Scholar 

  • Real LA, McElhany P (1996) Spatial pattern and process in plant-pathogen interactions. Ecology 77(4):1011–1025

    Article  Google Scholar 

  • Ripley BD (1981) Spatial statistics. Wiley, Hobroken

    Book  Google Scholar 

  • Robertson RD, Nelson GC, De Pinto A (2009) Investigating the predictive capabilities of discrete choice models in the presence of spatial effects. Pap Reg Sci 88(2):367–388

    Article  Google Scholar 

  • Rohatgi VK (1976) An introduction to probability theory and mathematical statistics. Wiley, New York

    Google Scholar 

  • Soon SYT (1996) Binomial approximation for dependent indicators. Statistica Sinica 6(3):703–714

    Google Scholar 

  • Stratton DA, Bennington CC (1996) Measuring spatial variation in natural selection using randomly-sown seeds of Arabidopsis thaliana. J Evol Biol 9(2):215–228

    Article  Google Scholar 

  • Taam W, Hamada M (1993) Detecting spatial effects from factorial-experiments—an application from integrated-circuit manufacturing. Technometrics 35(2):149–160

    Article  Google Scholar 

  • Upton G, Fingleton B (1985) Spatial data analysis by example. Wiley, Chichester

    Google Scholar 

  • Wang XK, Kockelman KM (2009) Application of the dynamic spatial ordered probit model: patterns of land development change in Austin, Texas. Pap Reg Sci 88(2):345–365

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge for financial support of grant ECO-2009-10534-ECON of Ministerio Español de Ciencia e Innovación and Fundación Séneca de la Región de Murcia. In preparing this paper we benefited from the comments of anonymous reviewers, and feedback received from participants in the 2009 Meetings of the AAG and the 2009 Spatial Econometric World Congress. In particular, we are grateful for useful discussions with Prof. Daniel A. Griffith and Ms. Melissa J. Rura. The authors alone are responsible for the contents of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Páez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 21.9 kb)

Appendix

Appendix

1.1 Proofs

Proof of Theorem 1

Under the null H 0, the joint probability density function of the n variables \( \left( {Y_{{\sigma_{1} }} ,Y_{{\sigma_{2} }} , \ldots ,Y_{{\sigma_{{k^{m} }} }} } \right) \) is:

$$ P\left( {Y_{{\sigma_{1} }} = a_{1} ,Y_{{\sigma_{2} }} = a_{2} , \ldots ,Y_{{\sigma_{{k^{m} }} }} = a_{{k^{m} }} } \right) = {\frac{{\left( {a_{1} + a_{2} + \cdots + a_{{k^{m} }} } \right)!}}{{a_{1} !a_{2} ! \cdot \cdots \cdot a_{{k^{m} }} !}}}p_{{\sigma_{1} }}^{{a_{1} }} p_{{\sigma_{2} }}^{{a_{2} }} \cdots p_{{\sigma_{{k^{m} }} }}^{{a_{{k^{m} }} }} $$
(19)

where a 1 + a 2 + ··· + a n  = R. Consequently, the joint distribution of the n variables \( \left( {Y_{{\sigma_{1} }} ,Y_{{\sigma_{2} }} , \ldots ,Y_{{\sigma_{{k^{m} }} }} } \right) \) is a multinomial distribution.

The likelihood function of the distribution given by Eq. (19) is:

$$ L\left( {p_{{\sigma_{1} }} ,p_{{\sigma_{2} }} , \ldots ,p_{{\sigma_{{k^{m} }} }} } \right) = {\frac{R!}{{n_{{\sigma_{1} }} !n_{{\sigma_{2} }} ! \cdot \cdots \cdot n_{{\sigma_{{k^{m} }} }} !}}}\,p_{{\sigma_{1} }}^{{n_{{\sigma_{1} }} }} p_{{\sigma_{2} }}^{{n_{{\sigma_{2} }} }} \cdots p_{{\sigma_{{k^{m} }} }}^{{n_{{\sigma_{{k^{m} }} }} }} $$
(20)

and since, \( \sum\nolimits_{i = 1}^{{k^{m} }} p_{{\sigma_{i} }} = 1 \), it follows that

$$ L\left( {p_{{\sigma_{1} }} ,p_{{\sigma_{2} }} , \ldots ,p_{{\sigma_{{k^{m} }} }} } \right) = {\frac{R!}{{n_{{\sigma_{1} }} !n_{{\sigma_{2} }} ! \cdot \cdots \cdot n_{{\sigma_{{k^{m} }} }} !}}}\,p_{{\sigma_{1} }}^{{n_{{\sigma_{1} }} }} p_{{\sigma_{2} }}^{{n_{{\sigma_{2} }} }} \cdots \left( {1 - p_{{\sigma_{1} }} - p_{{\sigma_{2} }} - \cdots - p_{{\sigma_{{k^{m} - 1}} }} } \right)^{{n_{{\sigma_{{k^{m} }} }} }}. $$
(21)

Then the logarithm of this likelihood function remains as

$$ \begin{aligned} \ln \left[ {L\left( {p_{{\sigma_{1} }} ,p_{{\sigma_{2} }} , \ldots ,p_{{\sigma_{{k^{m} }} }} } \right)} \right] = & \ln \left( {{\frac{R!}{{n_{{\sigma_{1} }} !n_{{\sigma_{2} }} ! \cdot \cdots \cdot n_{{\sigma_{{k^{m} }} }} !}}}} \right) + \sum\limits_{i = i}^{{k^{m} - 1}} n_{{\sigma_{i} }} \ln \left( {p_{{\sigma_{i} }} } \right) \\ & + n_{{\sigma_{{k^{m} }} }} \ln \left( {1 - p_{{\sigma_{1} }} - p_{{\sigma_{2} }} - \cdots - p_{{\sigma_{{k^{m} - 1}} }} } \right). \\ \end{aligned}$$
(22)

In order to obtain the maximum likelihood estimators \( \hat{p}_{{\sigma_{i} }} \) of \( p_{{\sigma_{i} }} \) for all i = 1, 2,…, n, we solve the following equation

$$ {\frac{\partial }{{\partial p_{{\sigma_{i} }} }}}\ln \left[ {L\left( {p_{{\sigma_{1} }} ,p_{{\sigma_{2} }} , \ldots ,p_{{\sigma_{n} }} } \right)} \right] = 0 $$
(23)

to get that:

$$ \hat{p}_{{\sigma_{i} }} = {\frac{{n_{{\sigma_{i} }} }}{R}}. $$
(24)

Then the likelihood ratio statistic is (see for example Lehman 1986):

$$ \begin{aligned} \lambda \left( Y \right) & = {\frac{{{\frac{R!}{{n_{{\sigma_{1} }} !n_{{\sigma_{2} }} ! \cdot \ldots \cdot n_{{\sigma_{{k^{m} }} }} !}}}\,p_{{\sigma_{1} }}^{{(0)n_{{\sigma_{1} }} }} p_{{\sigma_{2} }}^{{(0)n_{{\sigma_{2} }} }} \cdots p_{{\sigma_{{k^{m} }} }}^{{(0)n_{{\sigma_{{k^{m} }} }} }} }}{{{\frac{R}{{n_{{\sigma_{1} }} !n_{{\sigma_{2} }} ! \cdot \ldots \cdot n_{{\sigma_{{k^{m} }} }} !}}}\mathop {\widehat{p}}\nolimits_{{\sigma_{1} }}^{{n_{{\sigma_{1} }} }} \mathop {\widehat{p}}\nolimits_{{\sigma_{2} }}^{{n_{{\sigma_{2} }} }} \cdots \mathop {\widehat{p}}\nolimits_{{\sigma_{{k^{m} }} }}^{{n_{{\sigma_{{k^{m} }} }} }} }}} = {\frac{{\prod\nolimits_{i = 1}^{{k^{m} }} p_{{\sigma_{i} }}^{{(0)n_{{\sigma_{i} }} }} }}{{\prod\nolimits_{i = 1}^{{k^{m} }} \mathop {\left( {{\frac{{n_{{\sigma_{i} }} }}{R}}} \right)}\nolimits^{{n_{{\sigma_{i} }} }} }}} \\ &= R^{{\sum\nolimits_{i = 1}^{{k^{m} }} n_{{\sigma_{i} }} }} \prod\limits_{i = 1}^{{k^{m} }} \mathop {\left( {{\frac{{p_{{\sigma_{i} }}^{(0)} }}{{n_{{\sigma_{i} }} }}}} \right)}\nolimits^{{n_{{\sigma_{i} }} }} = R^{R} \prod\limits_{i = 1}^{{k^{m} }} \mathop {\left( {{\frac{{p_{{\sigma_{i} }}^{(0)} }}{{n_{{\sigma_{i} }} }}}} \right)}\nolimits^{{n_{{\sigma_{i} }} }} \\ \end{aligned} $$
(25)

where \( p_{{\sigma_{i} }}^{(0)} \) denotes the probability of the symbol σ i under the null hypothesis.

On the other hand, Q(m) = −2 ln(λ(Y)) asymptotically follows a Chi-squared distribution with k m − 1 degrees of freedom (see Lehman 1986). Hence:

$$ Q(m) = - 2\ln \left( {\lambda \left( Y \right)} \right) = - 2\left[ {R\ln \left( R \right) + \sum\limits_{i = 1}^{{k^{m} }} n_{{\sigma_{i} }} \ln \left( {{\frac{{p_{{\sigma_{i} }}^{(0)} }}{{n_{{\sigma_{i} }} }}}} \right)} \right] \sim \chi_{{k^{m} - 1}}^{2}. $$
(26)

Denote by α ij the number of times that class a j appears in symbol σ i and by q j  = P(X = a j ). Then under the null we have that \( p_{{\sigma_{i} }}^{(0)} = \prod\nolimits_{j = 1}^{k} {q_{j}^{{\alpha_{ij} }} } \) and hence, it follows that

$$ \begin{aligned} Q(m) & = - 2R\left[ {\ln (R) + \sum\limits_{i = 1}^{{k^{m} }} {\frac{{n_{{\sigma_{i} }} }}{R}}\ln \left( {{\frac{{\prod\nolimits_{j = 1}^{k} {q_{j}^{{\alpha_{ij} }} } }}{{n_{{\sigma_{i} }} }}}} \right)} \right] \\ & = - 2R\left[ {\ln (R) + \sum\limits_{i = 1}^{{k^{m} }} {\frac{{n_{{\sigma_{i} }} }}{R}}\left( {\ln \left( {\prod\limits_{j = 1}^{k} {q_{j}^{{\alpha_{ij} }} } } \right) - \ln \left( {n_{{\sigma_{i} }} } \right)} \right)} \right] \\ & = - 2R\left[ {\ln (R) + \sum\limits_{i = 1}^{{k^{m} }} {\frac{{n_{{\sigma_{i} }} }}{R}}\left( {\ln \left( {\prod\limits_{j = 1}^{k} {q_{j}^{{\alpha_{ij} }} } } \right) - \ln \left( {{\frac{{n_{{\sigma_{i} }} }}{R}}} \right) - \ln \left( R \right)} \right)} \right] \\ & = - 2R\left[ {\ln (R) + \sum\limits_{i = 1}^{{k^{m} }} {\frac{{n_{{\sigma_{i} }} }}{R}}\left( {\sum\limits_{j = 1}^{k} {\alpha_{ij} } \ln \left( {q_{j} } \right) - \ln \left( {{\frac{{n_{{\sigma_{i} }} }}{R}}} \right) - \ln \left( R \right)} \right)} \right]. \\ \end{aligned}$$
(27)

Now, taking into account that \( h(m) = - \sum\nolimits_{i = 1}^{{k^{m} }} {p_{{\sigma_{i} }} { \ln }\left( {p_{{\sigma_{i} }} } \right)} = - \sum\nolimits_{i = 1}^{{k^{m} }} {{\frac{{n_{{\sigma_{i} }} }}{R}}{ \ln }\left( {{\frac{{n_{{\sigma_{i} }} }}{R}}} \right)} \), we have that

$$ Q\left( m \right) = - 2R\left[ {\sum\limits_{i = 1}^{{k^{m} }} {\frac{{n_{{\sigma_{i} }} }}{R}}\sum\limits_{j = 1}^{k} {\alpha_{ij} } { \ln }\left( {q_{j} } \right) + h\left( m \right)} \right]. $$
(28)

Notice that if the spatial process is independent identically distributed then \( q_{j} = {\frac{1}{k}} \) and therefore \( Q(m) = 2R\left( {{ \ln }(k^{m} ) - h(m)} \right) \) which finishes the proof of the theorem.

Proof of Theorem 2

First, notice that the estimator of h(m), \( \widehat{h}\left( m \right) = - \sum\nolimits_{{\sigma \in S_{m} }} {\hat{p}_{\sigma } { \ln }\left( {\hat{p}_{\sigma } } \right)} \), where \( \hat{p}_{\sigma } = n_{\sigma } /R \), is consistent because, \( p\mathop { \lim }\nolimits_{R \to \infty } \hat{p}_{\sigma } = p_{\sigma } \), and hence:

$$ p\mathop { \lim }\limits_{R \to \infty } \widehat{h}\left( m \right) = h\left( m \right). $$
(29)

Recall that:

$$ Q\left( m \right) = 2R\left[ { - \sum\limits_{i = 1}^{{k^{m} }} \,{\frac{{n_{{\sigma_{i} }} }}{R}}\sum\limits_{j = 1}^{k} {\alpha_{ij} } \ln \left( {q_{j} } \right) + \sum\limits_{i = 1}^{{k^{m} }} {\frac{{n_{{\sigma_{i} }} }}{R}}\ln \left( {{\frac{{n_{{\sigma_{i} }} }}{R}}} \right)} \right]. $$
(30)

Now, let us call:

$$ H\left( m \right) = - \sum\limits_{i = 1}^{{k^{m} }} \,{\frac{{n_{{\sigma_{i} }} }}{R}}\sum\limits_{j = 1}^{k} {\alpha_{ij} } \ln \left( {q_{j} } \right) + \sum\limits_{i = 1}^{{k^{m} }} {\frac{{n_{{\sigma_{i} }} }}{R}}\ln \left( {{\frac{{n_{{\sigma_{i} }} }}{R}}} \right) = \sum\limits_{i = 1}^{{k^{m} }} {\frac{{n_{{\sigma_{i} }} }}{R}}\ln \left( {{\frac{{{\frac{{n_{{\sigma_{i} }} }}{R}}}}{{\prod\nolimits_{j = 1}^{k} {q_{j}^{{\alpha_{ij} }} } }}}} \right). $$
(31)

Also, since ln(x) ≤ x − 1 for all x with equality if and only if x = 1, and under the alternative hypothesis of spatial dependence of order ≤m we have that:

$$ {\frac{{{\frac{{n_{{\sigma_{i} }} }}{R}}}}{{\prod\nolimits_{j = 1}^{k} {q_{j}^{{\alpha_{ij} }} } }}} \ne 1 $$
(32)

it follows that:

$$ H\left( m \right) = - \sum\limits_{i = 1}^{{k^{m} }} {\frac{{n_{{\sigma_{i} }} }}{R}}\ln \left( {{\frac{{\prod\nolimits_{j = 1}^{k} {q_{j}^{{\alpha_{ij} }} } }}{{{\frac{{n_{{\sigma_{i} }} }}{R}}}}}} \right) > - \sum\limits_{i = 1}^{{k^{m} }} {\frac{{n_{{\sigma_{i} }} }}{R}}\left( {{\frac{{\prod\nolimits_{j = 1}^{k} {q_{j}^{{\alpha_{ij} }} } }}{{{\frac{{n_{{\sigma_{i} }} }}{R}}}}} - 1} \right) = - \sum\limits_{i = 1}^{{k^{m} }} \prod\limits_{j = 1}^{k} {q_{j}^{{\alpha_{ij} }} } + 1 \ge 0. $$
(33)

Since, also \( p\mathop { \lim }\nolimits_{R \to \infty } \hat{q}_{j} = q_{j} \), then by Eq. (29) we have

$$ p\mathop { \lim }\nolimits_{R \to \infty } \widehat{H}\left( m \right) = H\left( m \right). $$
(34)

Let 0 < C < ∞ with \( C \in \mathbb{R} \) and take R large enough such that

$$ {\frac{C}{2R}} < H( m ). $$
(35)

Then, under the spatial dependence of order less than or equal to m it follows that H(m) ≠ 0 and, thus,

$$ \begin{aligned} Pr\left[ {\widehat{Q}\left( m \right) > C} \right] & = Pr\left[ {2R\widehat{H}\left( m \right) > C} \right] \\ & = Pr\left[ {2R\left( {\widehat{H}\left( m \right) - H\left( m \right)} \right) > C - 2RH\left( m \right)} \right] \\ & = Pr\left[ {2R\left( {H\left( m \right) - \widehat{H}\left( m \right)} \right) < 2RH\left( m \right) - C} \right] \\ & = Pr\left[ {H\left( m \right) - \widehat{H}\left( m \right) <H\left( m \right) - {\frac{C}{2R}}} \right]. \\ \end{aligned} $$
(36)

Therefore, by Eqs. (34), (35) and (36) we have that:

$$ \mathop { \lim }\limits_{R \to \infty } Pr\left( {\widehat{Q}(m) > C} \right) = 1 $$
(37)

as desired.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz, M., López, F. & Páez, A. Testing for spatial association of qualitative data using symbolic dynamics. J Geogr Syst 12, 281–309 (2010). https://doi.org/10.1007/s10109-009-0100-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-009-0100-1

Keywords

JEL Classification

Navigation