Skip to main content
Log in

Instability in spatial error models: an application to the hypothesis of convergence in the European case

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

This paper focuses on the hypothesis of stability in the mechanisms of spatial dependence that are usually employed in spatial econometric models. We propose a specification strategy for which the first step is to solve a local estimation algorithm, called the Zoom estimation. The aim of this stage is to detect problems of heterogeneity in the parameters and to identify the regimes. Then we resort to a battery of formal Lagrange Multipliers to test the assumption of stability in the processes of spatial dependence. The alternative hypothesis consists of the existence of several regimes in these parameters. A small Monte Carlo serves to confirm the behaviour of this strategy in a context of finite size samples. As an illustration, we solve an application to the case of the hypothesis of convergence for the per capita income in the European regions. Our results reveal the existence of a strong Centre-Periphery dichotomy in which instability extends to all the elements (coefficients of regression as well as parameters of spatial dependence) that intervene in a classical conditional β-convergence model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Due to length restrictions, we have not included the results for the \( \mathop {\text{LM}}\nolimits_{\text{break}}^{\text{SLM}} \) which are in line with those obtained for the \( \mathop {\text{LM}}\nolimits_{\text{break}}^{\text{SEM}} \) test. They are available from the authors upon request.

  2. This selection has been clearly constrained by the availability of information for the whole set of regions. In addition, we have included three dummy variables in all the models to reduce the harmful impact of a group of outlying regions.

  3. We follow the notation introduced in Eqs. 1a, 1b .

  4. This part of the Appendix partly coincides with the discussion of Mur et al. (2008). However, we decided to maintain this material in order to give a more complete view of the entire proposal.

References

  • Abreu M, de Groot H, Florax R (2005) Space and growth: A survey of empirical evidence and methods. Rég et Dév 21:13–44

    Google Scholar 

  • Anselin L (1988a) Spatial econometrics methods and models. Kluwer, Dordrecht

    Google Scholar 

  • Anselin L (1988b) Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geogr Anal 20(1):1–17

    Google Scholar 

  • Anselin L (1990) Spatial dependence and spatial structural instability in applied regression analysis. J Reg Sci 30(2):185–207

    Article  Google Scholar 

  • Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27(2):93–115

    Google Scholar 

  • Anselin L, Bera A (1998) Spatial dependence in linear regression models with an introduction to spatial econometrics. In: Giles D, Ullaah A (eds) Handbook of applied economic statistics. Dekker, New York, pp 237–289

    Google Scholar 

  • Anselin L, Bera A, Florax R, Yoon M (1996) Simple diagnostic tests for spatial dependence. Reg Sci Urban Econ 26(1):77–104

    Article  Google Scholar 

  • Anselin L, Florax R, Rey S (eds) (2004) Advances in spatial econometrics. Springer, Berlin

    Google Scholar 

  • Arbia G (2006) Spatial econometrics statistical foundations and applications to regional convergence. Springer, Berlin

    Google Scholar 

  • Baumont C, Ertur C, LeGallo J (2003) Spatial convergence clubs and the European regional growth process, 1980–1995. In: Fingleton B (ed) European regional growth. Springer, Berlin, pp 131–158

    Google Scholar 

  • Breusch T, Pagan A (1979) A simple test for heteroscedasticity and random coefficient variation. Econometrica 47(5):1287–1294

    Article  Google Scholar 

  • Brunsdon C, Fotheringham S, Charlton M (1998) Spatial nonstationarity and autoregressive models. Environ Plan A 30(6):957–973

    Article  Google Scholar 

  • Burridge P (1981) Testing for a common factor in a spatial autoregression model. Environ Plan A 13(7):795–800

    Article  Google Scholar 

  • Chow C (1960) Tests of equality between sets of coefficients in two linear regressions. Econometrica 28(3):591–605

    Article  Google Scholar 

  • Durlauf S, Kourtellos A, Minkin A (2001) The local solow growth model. Eur Econ Rev 45(4–6):928–940

    Article  Google Scholar 

  • Durlauf S, Johnson P, Temple J (2005) Growth econometrics. In: Aghion P, Durlauf P (eds) Handbook of economic growth. Elsevier, Amsterdam, pp 555–677

    Chapter  Google Scholar 

  • Egger P, Pfaffermayr M (2006) Spatial convergence. Pap Reg Sci 85(2):199–216

    Article  Google Scholar 

  • Ertur C, Koch W (2007) Growth, technological interdependence and spatial externalities: theory and evidence. J Appl Econ 22(6):1033–1062

    Article  Google Scholar 

  • Ertur C, LeGallo J, LeSage J (2007) Local versus global convergence in Europe: a bayesian spatial econometric approach. Rev Reg Stud 37(1):82–108

    Google Scholar 

  • Fingleton B (ed) (2003) European regional growth. Springer, Berlin

    Google Scholar 

  • Fingleton B, Lopez-Bazo E (2006) Empirical growth models with spatial effects. Pap Reg Sci 85(2):177–198

    Article  Google Scholar 

  • Fischer M, Stirböck C (2006) Pan-European regional income growth and club-convergence insights from a spatial econometric perspective. Ann Reg Sci 40(4):693–721

    Article  Google Scholar 

  • Fotheringham A, Charlton M, Brunsdon C (1999) Geographically weighted regression a natural evolution of the expansion method for spatial data analysis. Environ Plan A 30(11):1905–1927

    Article  Google Scholar 

  • Huang J (1984) The autoregressive moving average model for spatial analysis. Aust J Stat 26(2):169–178

    Article  Google Scholar 

  • Kubo Y (1995) Scale economies, regional externalities, and the possibility of uneven development. J Reg Sci 35(1):29–42

    Article  Google Scholar 

  • Lacombe D (2004) Does econometric methodology matter? an analysis of public policy using spatial econometric techniques. Geogr Anal 36(2):105–118

    Article  Google Scholar 

  • LeGallo J, Dall’Erba S (2006) Evaluating the temporal and spatial heterogeneity of the European convergence process, 1980–1999. J Reg Sci 46(2):269–288

    Article  Google Scholar 

  • LeGallo J, Ertur C, Baumont C (2003) A spatial econometric analysis of convergence across european regions, 1980–1995. In: Fingleton B (ed) European regional growth. Springer, Berlin, pp 99–130

    Google Scholar 

  • LeSage J, Pace K (2004) Spatial autoregressive local estimation. In: Getis A, Mur J, Zoller H (eds) Spatial econometrics and spatial statistics. Palgrave, London, pp 31–51

    Google Scholar 

  • López F, Mur J, Angulo A (2009a) Local estimation of spatial autocorrelation processes. In: Páez A, Le Gallo J, Buliung R, Dall’Erba S (eds) Progress in spatial analysis: theory, computation and thematic applications. Springer, Berlin, pp 111–140

    Google Scholar 

  • López F, Angulo A, Mur J (2009b) Maps of continuous spatial dependence. Regions et Développement 30:1–24

  • Lopez-Bazo E, Vayá E, Artís M (2004) Regional externalities and growth: evidence from European regions. J Reg Sci 44(1):43–73

    Article  Google Scholar 

  • Magrini S (2004) Regional (di)convergence. In: Henderson V, Thisse V (eds) Handbook of regional and urban economics. Elsevier, Amsterdam, pp 2741–2796

    Google Scholar 

  • Mur J, Angulo A (2006) The spatial Durbin model and the common factor tests. Spat Econ Anal 1(2):207–226

    Article  Google Scholar 

  • Mur J, López F, Angulo A (2008) Symptoms of instability in models of spatial dependence. Geogr Anal 40(2):189–211

    Article  Google Scholar 

  • Mur J, López F, Angulo A (2009) Testing the hypothesis of stability in spatial econometric models. Pap Reg Sci 88(2):409–444

    Article  Google Scholar 

  • Páez A, Uchida T, Miyamoto K (2002a) A General framework for estimation and inference of geographically weighted regression models 1: location-specific kernel bandwidth and a test for locational heterogeneity. Environ Plan A 34(4):733–754

    Article  Google Scholar 

  • Páez A, Uchida T, Miyamoto K (2002b) A general framework for estimation and inference of geographically weighted regression models 2: spatial association and model specification tests. Environ Plan A 34(5):883–904

    Article  Google Scholar 

  • Parent O, Riou S (2005) Bayesian analysis of knowledge: spillovers in European regions. J Reg Sci 45(4):747–775

    Article  Google Scholar 

  • Quah D (1996) Regional convergence clusters across Europe. Eur Econ Rev 40(3–5):951–958

    Article  Google Scholar 

  • Ramajo J, Márquez M, Hewings G, Salinas M (2008) Spatial heterogeneity and interregional spillovers in the European union: do cohesion policies encourage convergence across regions? Eur Econ Rev 52(3):551–567

    Article  Google Scholar 

  • Rey S, Janikas M (2005) Regional convergence, inequality and space. J Econ Geogr 5(2):155–176

    Article  Google Scholar 

  • Rietveld P, Wintershoven H (1998) Border effects and spatial autocorrelation in the supply of network infrastructure. Pap Reg Sci 77(3):265–276

    Article  Google Scholar 

  • Zeileis A, Leisch F, Kleiber C, Hornik K (2005) Monitoring structural change in dynamic econometric models. J Appl Econ 20(1):99–121

    Article  Google Scholar 

Download references

Acknowledgments

A preliminary version of this paper was published in 2007 by FUNCAS (Fundación de las Cajas de Ahorro) as the Working Paper 2007/367. Furthermore, project ECO2009-10534/ECON of the Ministerio de Ciencia e Innovación del Reino de España also contributed to the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando López.

Appendix: Tests for the existence of a structural break in the mechanisms of spatial interaction

Appendix: Tests for the existence of a structural break in the mechanisms of spatial interaction

In this Appendix, we are going to obtain the expressions of the Lagrange Multipliers of Eqs. 4 and 6 with which we test for the existence of a break in the parameter of spatial dependence. The first part of the appendix is dedicated to the SLM and the second to a SEM.

1.1 The case of the SLMFootnote 4

The equation for this case appears in expression given by Eq. 4 in the text:

$$ \left. \begin{array}{l} y = \mathop \gamma \nolimits_{0} {\mathbf{W}}y + \mathop \gamma \nolimits_{1} \mathop {\mathbf{W}}\nolimits^{*} y + x\beta + u \hfill \\ u\sim N(0,\mathop \sigma \nolimits^{2} I) \hfill \\ \end{array} \right\} $$
(A1)

whose log-likelihood function is:

$$ l(y;\varphi ) = -\, {\frac{R}{2}}{ \log }(2\pi ) - {\frac{R}{2}}{ \log }(\mathop \sigma \nolimits^{2} ) - {\frac{{\left( {{\mathbf{B}}y - x\beta } \right)^{\prime } \left( {{\mathbf{B}}y - x\beta } \right)}}{{2\mathop \sigma \nolimits^{2} }}} + { \log }\left| {\mathbf{B}} \right| $$
(A2)

where φ is the vector of parameters of the model, φ = [β, γ0, γ1, σ2]′, and B is a square matrix of order (R, R), \( {\mathbf{B}} = I - \mathop \gamma \nolimits_{0} {\mathbf{W}} - \mathop \gamma \nolimits_{1} \mathop {\mathbf{W}}\nolimits^{*} \). The score vector is the following:

$$ g(y;\varphi ) = {\frac{\partial l(y;\varphi )}{\partial \varphi }} = {\frac{1}{{\mathop \sigma \nolimits^{2} }}}\left[ {\begin{array}{*{20}c} {x^{\prime}\left( {{\mathbf{B}}y - x\beta } \right)} \\ {y^{\prime}{\mathbf{W^{\prime}}}\left( {{\mathbf{B}}y - x\beta } \right) + \mathop \sigma \nolimits^{2} {\frac{{\partial { \log }\left| {\mathbf{B}} \right|}}{{\partial \mathop \gamma \nolimits_{0} }}}} \\ {y^{\prime}{\mathbf{W}}^{*\prime } \left( {{\mathbf{B}}y - x\beta } \right) + \mathop \sigma \nolimits^{2} {\frac{{\partial { \log }\left| {\mathbf{B}} \right|}}{{\partial \mathop \gamma \nolimits_{1} }}}} \\ { - {\frac{R}{2}} + {\frac{{\left( {{\mathbf{B}}y - x\beta } \right)^{\prime } \left( {{\mathbf{B}}y - x\beta } \right)}}{{2\mathop \sigma \nolimits^{2} }}}} \\ \end{array} } \right] $$
(A3)

Under the assumption that there is no break in the coefficient of spatial dependence, this vector simplifies to:

$$ \left. {\begin{array}{*{20}c} {\mathop H\nolimits_{0} :\mathop \gamma \nolimits_{1} = 0} \\ {\mathop H\nolimits_{A} :\mathop \gamma \nolimits_{1} \ne 0} \\ \end{array} } \right\} \Rightarrow \mathop {g(y;\varphi )}\nolimits_{{\left| {\mathop H\nolimits_{0} } \right.}} = \left[ {\begin{array}{*{20}c} 0 \\ 0 \\ {{\frac{{y^{\prime}{\mathbf{W}}^{*\prime } \tilde{u}}}{{\mathop {\tilde{\sigma }}\nolimits^{2} }}} - {\text{tr}}\left[ {\mathop {\left( {I - \mathop {\tilde{\gamma }}\nolimits_{0} {\mathbf{W}}} \right)}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{*} } \right]} \\ 0 \\ \end{array} } \right] $$
(A4)

where \( \mathop {\tilde{\gamma }}\nolimits_{0} \) and \( \mathop {\tilde{\sigma }}\nolimits^{2} \) are the ML estimations of γ0 and σ2 and \( \tilde{u} \) is the corresponding series of residuals of the restricted model:

$$ \left. \begin{array}{l} y = \mathop \gamma \nolimits_{0} {\mathbf{W}}y + x\beta + u \hfill \\ u\sim N(0,\mathop \sigma \nolimits^{2} I) \hfill \\ \end{array} \right\} $$
(A5)

The structure of the Hessian matrix is a bit complex:

$$ \begin{gathered} {\frac{{\mathop \partial \nolimits^{2} l(y;\varphi )}}{{\partial \varphi \partial \varphi^{\prime}}}} = - {\frac{1}{{\mathop \sigma \nolimits^{2} }}}\left[ {\begin{array}{*{20}c} {x^{\prime}x} & {x^{\prime}{\mathbf{W^{\prime}}}y} & {x^{\prime}{\mathbf{W}}^{*\prime } y} & {{\frac{1}{{\mathop \sigma \nolimits^{2} }}}x^{\prime}u} \\ {y^{\prime}{\mathbf{W}}x} & {y^{\prime}{\mathbf{W^{\prime}W}}y - \mathop \sigma \nolimits^{2} {\frac{{\mathop \partial \nolimits^{2} { \log }\left| {\mathbf{B}} \right|}}{{\partial \mathop \gamma \nolimits_{0}^{2} }}}} & {y^{\prime}{\mathbf{W^{\prime}}}\mathop {\mathbf{W}}\nolimits^{*} y - \mathop \sigma \nolimits^{2} {\frac{{\mathop \partial \nolimits^{2} { \log }\left| {\mathbf{B}} \right|}}{{\partial \mathop \gamma \nolimits_{0} \partial \mathop \gamma \nolimits_{1} }}}} & {{\frac{1}{{\mathop \sigma \nolimits^{2} }}}y^{\prime}{\mathbf{W^{\prime}}}u} \\ {y^{\prime}\mathop {\mathbf{W}}\nolimits^{*} x} & {y^{\prime}{\mathbf{W}}^{*\prime } {\mathbf{W}}y - \mathop \sigma \nolimits^{2} {\frac{{\mathop \partial \nolimits^{2} { \log }\left| {\mathbf{B}} \right|}}{{\partial \mathop \gamma \nolimits_{0} \partial \mathop \gamma \nolimits_{1} }}}} & {y^{\prime}{\mathbf{W}}^{*\prime } \mathop {\mathbf{W}}\nolimits^{*} y - \mathop \sigma \nolimits^{2} {\frac{{\mathop \partial \nolimits^{2} { \log }\left| {\mathbf{B}} \right|}}{{\partial \mathop \gamma \nolimits_{1}^{2} }}}} & {{\frac{1}{{\mathop \sigma \nolimits^{2} }}}y^{\prime}{\mathbf{W}}^{*\prime } u} \\ {{\frac{1}{{\mathop \sigma \nolimits^{2} }}}u^{\prime}x} & {{\frac{1}{{\mathop \sigma \nolimits^{2} }}}u^{\prime}{\mathbf{W}}y} & {{\frac{1}{{\mathop \sigma \nolimits^{2} }}}u^{\prime}\mathop {\mathbf{W}}\nolimits^{*} y} & { - {\frac{R}{{\mathop {2\sigma }\nolimits^{2} }}} + {\frac{{u^{\prime}u}}{{\mathop \sigma \nolimits^{4} }}}} \\ \end{array} } \right] \hfill \\ \end{gathered} $$
(A6)

The information matrix evaluated under the null hypothesis is the following:

$$ \begin{gathered} {\mathbf{I}}(\varphi ) = - \mathop {E\left[ {{\frac{{\mathop \partial \nolimits^{2} l(y;\varphi )}}{{\partial \varphi \partial \varphi^{\prime}}}}} \right]}\nolimits_{{\left| {\mathop H\nolimits_{0} } \right.}} = {\frac{1}{{\mathop \sigma \nolimits^{2} }}}\left[ {\begin{array}{*{20}c} {x^{\prime}x} & {x^{\prime}{\mathbf{W^{\prime}}}\mathop {\mathbf{B}}\nolimits^{ - 1} x\beta } & {x^{\prime}{\mathbf{W}}^{*\prime } \mathop {\mathbf{B}}\nolimits^{ - 1} x\beta } & 0 \\ {\beta^{\prime}x^{\prime}\mathop {{\mathbf{B^{\prime}}}}\nolimits^{ - 1} {\mathbf{W}}x} & \begin{gathered} \left\{ {\beta^{\prime}x^{\prime}\mathop {{\mathbf{B^{\prime}}}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{'} } \right.{\mathbf{W}}\mathop {\mathbf{B}}\nolimits^{ - 1} x\beta \hfill \\ \left. { + 2\mathop \sigma \nolimits^{2} {\text{tr}}\mathop {\mathbf{B}}\nolimits^{ - 1} {\mathbf{W}}\mathop {\mathbf{B}}\nolimits^{ - 1} {\mathbf{W}}} \right\} \hfill \\ \end{gathered} & \begin{gathered} \left\{ {\beta^{\prime}x^{\prime}\mathop {{\mathbf{B^{\prime}}}}\nolimits^{ - 1} {\mathbf{W^{\prime}}}} \right.\mathop {\mathbf{W}}\nolimits^{*} \mathop {\mathbf{B}}\nolimits^{ - 1} x\beta \hfill \\ \left. { + 2\mathop \sigma \nolimits^{2} {\text{tr}}\mathop {\mathbf{B}}\nolimits^{ - 1} {\mathbf{W}}\mathop {\mathbf{B}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{*} } \right\} \hfill \\ \end{gathered} & {{\text{tr}}\mathop {{\mathbf{B^{\prime}}}}\nolimits^{ - 1} {\mathbf{W}}} \\ {\beta^{\prime}x^{\prime}\mathop {{\mathbf{B^{\prime}}}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{*} x} & \begin{gathered} \left\{ {\beta^{\prime}x^{\prime}\mathop {{\mathbf{B^{\prime}}}}\nolimits^{ - 1} {\mathbf{W^{\prime}}}} \right.\mathop {\mathbf{W}}\nolimits^{*} \mathop {\mathbf{B}}\nolimits^{ - 1} x\beta \hfill \\ \left. { + 2\mathop \sigma \nolimits^{2} {\text{tr}}\mathop {\mathbf{B}}\nolimits^{ - 1} {\mathbf{W}}\mathop {\mathbf{B}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{*} } \right\} \hfill \\ \end{gathered} & \begin{gathered} \left\{ {\beta^{\prime}x^{\prime}\mathop {\mathbf{B}}\nolimits^{ - 1} {\mathbf{W}}^{*\prime } } \right.\mathop {\mathbf{W}}\nolimits^{*} \mathop {\mathbf{B}}\nolimits^{ - 1} x\beta \hfill \\ \left. { + 2\mathop \sigma \nolimits^{2} {\text{tr}}\mathop {\mathbf{B}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{*} \mathop {\mathbf{B}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{*} } \right\} \hfill \\ \end{gathered} & {{\text{tr}}\mathop {{\mathbf{B^{\prime}}}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{*} } \\ 0 & {{\text{tr}}{\mathbf{W^{\prime}}}\mathop {\mathbf{B}}\nolimits^{ - 1} } & {{\text{tr}}{\mathbf{W}}^{*\prime } \mathop {\mathbf{B}}\nolimits^{ - 1} } & {{\frac{R}{{\mathop {2\sigma }\nolimits^{2} }}}} \\ \end{array} } \right] \hfill \\ \end{gathered} $$
(A7)

The Lagrange Multiplier for the test of Eq. A4 is obtained in the usual way:

$$ \begin{aligned} \left. {\begin{array}{*{20}l} {\mathop H\nolimits_{0} :\mathop \gamma \nolimits_{1} = 0} \\ {\mathop H\nolimits_{A} :\mathop \gamma \nolimits_{1} \ne 0} \\ \end{array} } \right\} &\Rightarrow \mathop {{\rm LM}}\nolimits_{{\rm break}}^{{\rm LAG}} = \left[ {\mathop {g\left( \varphi \right)}\nolimits_{{\left| {\mathop H\nolimits_{0} } \right.}} } \right]^{\prime } \mathop {\left[ {\mathop {I\left( \varphi \right)}\nolimits_{{\left| {\mathop H\nolimits_{0} } \right.}} } \right]}\nolimits^{ - 1} \left[ {\mathop {g\left( \varphi \right)}\nolimits_{{\left| {\mathop H\nolimits_{0} } \right.}} } \right]\mathop \sim \limits_{{\rm as}} \mathop \chi \nolimits^{2} (1) \\ \mathop {{\rm LM}}\nolimits_{{\rm break}}^{{\rm LAG}} &= {\frac{{\mathop {\left[ {{\frac{{y^{\prime } \mathop {\mathbf{W}}\nolimits^{*} \tilde{u}}}{{\mathop {\tilde{\sigma }}\nolimits^{2} }}} - {\rm tr}\mathop {{\tilde{\mathbf{B}}}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{*} } \right]}\nolimits^{2} }}{{\mathop {\tilde{\sigma }}\nolimits_{{\rm lag}}^{2} }}}\mathop \sim \limits_{{\rm as}} \mathop \chi \nolimits^{2} (1) \\ \end{aligned} $$
(A8)

The term \( \mathop {\tilde{\sigma }}\nolimits_{\text{lag}}^{2} \) in the denominator is the asymptotic variance of the restriction corresponding to the null hypothesis, obtained as:

$$ \begin{gathered} {\tilde{\sigma }}_{\text{lag}}^{2} = \tilde{a} - \tilde{b}^{\prime} {{\tilde{\mathbf{V}}}\left[ {\tilde{\varphi }} \right]}_{{\left| { H_{0} } \right.}} \tilde{b} \hfill \\ \begin{array}{*{20}c} \to & {\tilde{a} = {\frac{{\tilde{\beta }^{\prime}x^{\prime}{{\tilde{\mathbf{B}}}}^{ - 1} {\mathbf{W}}^{\prime *} {\mathbf{W}}^{*} {{\tilde{\mathbf{B}}}}^{ - 1} x\tilde{\beta }}} {{{\tilde{\sigma }}^{2} }}} + 2{\text{tr}}{{\tilde{\mathbf{B}}}}^{ - 1} {\mathbf{W}}^{*} {{\tilde{\mathbf{B}}}}^{ - 1} {\mathbf{W}}^{*} } \\ \end{array} \hfill \\ \begin{array}{*{20}c} \to & {\tilde{b} = {\frac{1}{{{\tilde{\sigma }}^{2} }}} \left[ {\begin{array}{*{20}c} {x^{\prime}{\mathbf{W}}^{\prime *} {{\tilde{\mathbf{B}}}}^{ - 1} x\tilde{\beta }} \\ {\tilde{\beta }^{\prime}x^{\prime} {{\tilde{\mathbf{B}^{\prime}}}} ^{ - 1} {\mathbf{W^{\prime}}} {\mathbf{W}}^{*} {{\tilde{\mathbf{B}}}}^{ - 1} x\tilde{\beta } + 2 {\tilde{\sigma }}^{2} {\text{tr}} {{\tilde{\mathbf{B}}}}^{ - 1} {\mathbf{W}} {{\tilde{\mathbf{B}}}}^{ - 1} {\mathbf{W}}^{*} } \\ {{\text{tr}} {{\tilde{\mathbf{B}^{\prime}}}}^{ - 1} {\mathbf{W}}^{*} } \\ \end{array} } \right]} \\ \end{array} \hfill \\ \end{gathered} $$
(A9)

Matrix \( \mathop {{\tilde{\mathbf{V}}}\left[ {\tilde{\varphi }} \right]}\nolimits_{{\left| {\mathop H\nolimits_{0} } \right.}} \) is the ML estimation of the corresponding variance matrix of the vector of parameters under the null hypothesis of Eq. A8. The Lagrange Multiplier of Eq. A8 can easily be generalized to the more general case in which there are p different regimes in the coefficient of autocorrelation. The extended model corresponding to this case is:

$$ \left. \begin{array}{l} y = \mathop \gamma \nolimits_{0} {\mathbf{W}}y + \sum\limits_{s = 1}^{p} {\mathop \gamma \nolimits_{s} \mathop {\mathbf{W}}\nolimits_{s}^{*} y} + x\beta + u \hfill \\ u\sim N(0,\mathop \sigma \nolimits^{2} I) \hfill \\ \end{array} \right\} $$
(A10)

The null hypothesis will be of the joint type:

$$ \begin{aligned} & \left. {\begin{array}{*{20}l} {\mathop H\nolimits_{0} :\mathop \gamma \nolimits_{1} = \mathop \gamma \nolimits_{2} = \ldots = \mathop \gamma \nolimits_{p} = 0} \hfill \\ {\mathop H\nolimits_{A} :\exists \mathop \gamma \nolimits_{j} \ne 0} \hfill \\ \end{array} } \right\} \hfill \\ & \quad \Rightarrow \mathop {{\rm LM}}\nolimits_{{\rm break}}^{{\rm LAG}} = \left[ {\mathop {g\left( \varphi \right)}\nolimits_{{\left| {\mathop H\nolimits_{0} } \right.}} } \right]^{\prime } \mathop {\left[ {\mathop {{\mathbf{I}}\left( \varphi \right)}\nolimits_{{\left| {\mathop H\nolimits_{0} } \right.}} } \right]}\nolimits^{ - 1} \left[ {\mathop {g\left( \varphi \right)}\nolimits_{{\left| {\mathop H\nolimits_{0} } \right.}} } \right]\mathop \sim \limits_{{\rm as}} \mathop \chi \nolimits^{2} (p) \hfill \\ \end{aligned} $$
(A11)

The score will reproduce the structure indicated in Eq. A4, with an equation such as \( {\frac{{y^{\prime}\mathop {\mathbf{W}}\nolimits_{s}^{*} \tilde{u}}}{{\mathop {\tilde{\sigma }}\nolimits^{2} }}} - {\text{tr}}\mathop {{\tilde{\mathbf{B}}}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits_{s}^{*} \) for each regime. The Hessian and information matrices must be similarly extended.

1.2 The case of the SEM

The specification that we must use in this case is that of Eq. 5:

$$ \left. \begin{array} {l}y = x\beta + u \hfill \\ u = \mathop \rho \nolimits_{0} {\mathbf{W}}u + \mathop \rho \nolimits_{1} \mathop {\mathbf{W}}\nolimits^{*} u + \varepsilon \hfill \\ \varepsilon \sim N(0,\mathop \sigma \nolimits^{2} I) \hfill \\ \end{array} \right\} $$
(A12)

The log-likelihood function is the following:

$$ l(y;\varphi ) = - \,{\frac{R}{2}}{ \log }(2\pi ) - {\frac{R}{2}}{ \log }(\mathop \sigma \nolimits^{2} ) - {\frac{{\left( {y - x\beta } \right)^{\prime } {\mathbf{B^{\prime}B}}\left( {y - x\beta } \right)}}{{2\mathop \sigma \nolimits^{2} }}} + { \log }\left| {\mathbf{B}} \right| $$
(A13)

where φ is the vector of parameters φ = [β, ρ0, ρ12]′ and B is the diffusion matrix, of order (R, R), \( {\mathbf{B}} = I - \mathop \rho \nolimits_{0} {\mathbf{W}} - \mathop \rho \nolimits_{1} \mathop {\mathbf{W}}\nolimits^{*} \). The score vector is:

$$ g(y;\varphi ) = {\frac{\partial l(y;\varphi )}{\partial \varphi }} = {\frac{1}{{\mathop \sigma \nolimits^{2} }}}\left[ {\begin{array}{*{20}c} {x^{\prime}{\mathbf{B^{\prime}}}\varepsilon } \\ {u^{\prime}{\mathbf{W^{\prime}}}\varepsilon + \mathop \sigma \nolimits^{2} {\frac{{\partial { \log }\left| {\mathbf{B}} \right|}}{{\partial \mathop \rho \nolimits_{0} }}}} \\ {u'{\mathbf{W}}^{*\prime } \varepsilon + \mathop \sigma \nolimits^{2} {\frac{{\partial { \log }\left| {\mathbf{B}} \right|}}{{\partial \mathop \rho \nolimits_{1} }}}} \\ { - {\frac{R}{{2\mathop \sigma \nolimits^{2} }}} + {\frac{{\varepsilon^{\prime } \varepsilon }}{{2\mathop \sigma \nolimits^{2} }}}} \\ \end{array} } \right] $$
(A14)

with \( u = y - x\beta \) and \( \varepsilon = {\mathbf{B}}u = {\mathbf{B}}(y - x\beta ) \). Under the assumption that there is no break in the coefficient of spatial dependence, the model of Eq. A12 simplifies to:

$$ \left. \begin{array} {l}y = x\beta + u \hfill \\ u = \mathop \rho \nolimits_{0} {\mathbf{W}}u + \varepsilon \hfill \\ \varepsilon \sim N(0,\mathop \sigma \nolimits^{2} I) \hfill \\ \end{array} \right\} $$
(A15)

so the score becomes:

$$ \left. {\begin{array}{*{20}c} {\mathop H\nolimits_{0} :\mathop \rho \nolimits_{1} = 0} \\ {\mathop H\nolimits_{A} :\mathop \rho \nolimits_{1} \ne 0} \\ \end{array} } \right\} \Rightarrow \mathop {g(y;\varphi )}\nolimits_{{\left| {\mathop H\nolimits_{0} } \right.}} = \left[ {\begin{array}{*{20}c} 0 \\ 0 \\ {{\frac{{\tilde{u}^{\prime}\mathop {\mathbf{W}}\nolimits^{*} {\mathbf{B}}\tilde{u}}}{{\mathop {\tilde{\sigma }}\nolimits^{2} }}} - {\text{tr}}\left[ {\mathop {\left( {I - \mathop {\tilde{\rho }}\nolimits_{0} {\mathbf{W}}} \right)}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{*} } \right]} \\ 0 \\ \end{array} } \right] $$
(A16)

where \( \mathop {\tilde{\rho }}\nolimits_{0} \) and \( \mathop {\tilde{\sigma }}\nolimits^{2} \) are the ML estimations of ρ0 and σ2 in the model of Eq. A15 and \( \tilde{u} \) is the associated series of residuals. From the score of Eq. A14, it is straightforward to obtain the Hessian matrix:

$$ \begin{gathered} {\frac{{\mathop \partial \nolimits^{2} l(y;\varphi )}}{{\partial \varphi \partial \varphi^{\prime}}}} = - \frac{1}{{\mathop \sigma \nolimits^{2}}} \hfill \\ \left[ {\begin{array}{*{20}c} {x^{\prime}{\mathbf{B^{\prime}B}}x} & {x^{\prime}{\mathbf{WB}}u} & {x^{\prime}\mathop {\mathbf{W}}\nolimits^{*} {\mathbf{B}}u} & {{\frac{1}{{\mathop \sigma \nolimits^{2} }}}x^{\prime}{\mathbf{B^{\prime}B}}u} \\ {u^{\prime}{\mathbf{B^{\prime}W^{\prime}}}x} & {u^{\prime}{\mathbf{W^{\prime}W}}u - \mathop \sigma \nolimits^{2} {\frac{{\mathop \partial \nolimits^{2} { \log }\left| {\mathbf{B}} \right|}}{{\partial \mathop \rho \nolimits_{0}^{2} }}}} & {u^{\prime}{\mathbf{W^{\prime}}}\mathop {\mathbf{W}}\nolimits^{*} u - \mathop \sigma \nolimits^{2} {\frac{{\mathop \partial \nolimits^{2} { \log }\left| {\mathbf{B}} \right|}}{{\partial \mathop \rho \nolimits_{0} \partial \mathop \rho \nolimits_{1} }}}} & {{\frac{1}{{\mathop \sigma \nolimits^{2} }}}u^{\prime}{\mathbf{W^{\prime}B}}u} \\ {u^{\prime}{\mathbf{B^{\prime}W}}^{{*^{\prime}}} x} & {u^{\prime } \mathop {\mathbf{W}}\nolimits^{*\prime } {\mathbf{W}}u - \mathop \sigma \nolimits^{2} {\frac{{\mathop \partial \nolimits^{2} { \log }\left| {\mathbf{B}} \right|}}{{\partial \mathop \rho \nolimits_{0} \partial \mathop \rho \nolimits_{1} }}}} & {u^{\prime}\mathop {\mathbf{W}}\nolimits^{*\prime } \mathop {\mathbf{W}}\nolimits^{*} u - \mathop \sigma \nolimits^{2} {\frac{{\mathop \partial \nolimits^{2} { \log }\left| {\mathbf{B}} \right|}}{{\partial \mathop \rho \nolimits_{1}^{2} }}}} & {{\frac{1}{{\mathop \sigma \nolimits^{2} }}}u^{\prime}\mathop {{\mathbf{W^{\prime}}}}\nolimits^{*} {\mathbf{B}}u} \\ {{\frac{1}{{\mathop \sigma \nolimits^{2} }}}u^{\prime}{\mathbf{B^{\prime}B}}x} & {{\frac{1}{{\mathop \sigma \nolimits^{2} }}}u^{\prime}{\mathbf{B^{\prime}W}}u} & {{\frac{1}{{\mathop \sigma \nolimits^{2} }}}u^{\prime}\mathop {{\mathbf{B^{\prime}W}}}\nolimits^{*} u} & { - {\frac{R}{{\mathop {2\sigma }\nolimits^{2} }}} + {\frac{{u^{\prime}{\mathbf{B^{\prime}B}}u}}{{\mathop \sigma \nolimits^{4} }}}} \\ \end{array} } \right] \hfill \\ \end{gathered} $$
(A17)

as well as the information matrix corresponding to the null hypothesis:

$$ \begin{gathered} {\mathbf{I}}(\varphi ) = - \mathop {E\left[ {{\frac{{\mathop \partial \nolimits^{2} l(y;\varphi )}}{{\partial \varphi \partial \varphi^{\prime}}}}} \right]}\nolimits_{{\left| {\mathop H\nolimits_{0} } \right.}} = {\frac{1}{{\mathop \sigma \nolimits^{2} }}}\left[ {\begin{array}{*{20}c} {x^{\prime}{\mathbf{B^{\prime}B}}x} & 0 & 0 & 0 \\ {0^{\prime}} & {2\mathop \sigma \nolimits^{2} {\text{tr}}\left( {\mathop {{\mathbf{B^{\prime}}}}\nolimits^{ - 1} {\mathbf{W^{\prime}}}\mathop {\mathbf{B}}\nolimits^{ - 1} {\mathbf{W}}} \right)} & {2\mathop \sigma \nolimits^{2} {\text{tr}}\left( {\mathop {{\mathbf{B^{\prime}}}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{*'} \mathop {\mathbf{B}}\nolimits^{ - 1} {\mathbf{W}}} \right)} & {{\text{tr}}\mathop {{\mathbf{B^{\prime}}}}\nolimits^{ - 1} {\mathbf{W}}} \\ {0^{\prime}} & {2\mathop \sigma \nolimits^{2} {\text{tr}}\left( {\mathop {{\mathbf{W^{\prime}B^{\prime}}}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{*} \mathop {\mathbf{B}}\nolimits^{ - 1} } \right)} & {2\mathop \sigma \nolimits^{2} {\text{tr}}\left( {\mathop {{\mathbf{B^{\prime}}}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{*\prime } \mathop {\mathbf{B}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{*} } \right)} & {{\text{tr}}\mathop {{\mathbf{B^{\prime}}}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{*} } \\ 0 & {{\text{tr}}{\mathbf{W^{\prime}}}\mathop {\mathbf{B}}\nolimits^{ - 1} } & {{\text{tr}}\mathop {\mathbf{W}}\nolimits^{\prime *} \mathop B\nolimits^{ - 1} } & {{\frac{R}{{\mathop {2\sigma }\nolimits^{2} }}}} \\ \end{array} } \right] \hfill \\ \end{gathered} $$
(A18)

Finally, the Lagrange Multiplier for the hypothesis of Eq. A16 takes the following expression:

$$ \begin{aligned} \left. {\begin{array}{*{20}c} {\mathop H\nolimits_{0} :\mathop \rho \nolimits_{1} = 0} \\ {\mathop H\nolimits_{A} :\mathop \rho \nolimits_{1} \ne 0} \\ \end{array} } \right\} &\Rightarrow \mathop {{\rm LM}}\nolimits_{{\rm break}}^{{\rm ERR}} = \left[ {\mathop {g\left( \theta \right)}\nolimits_{{\left| {\mathop H\nolimits_{0} } \right.}} } \right]^{\prime } \mathop {\left[ {\mathop {\mathbf{I}\left( \theta \right)}\nolimits_{{\left| {\mathop H\nolimits_{0} } \right.}} } \right]}\nolimits^{ - 1} \left[ {\mathop {g\left( \theta \right)}\nolimits_{{\left| {\mathop H\nolimits_{0} } \right.}} } \right]\mathop \sim \limits_{{\rm as}} \mathop \chi \nolimits^{2} (1) \\& \mathop {{\rm LM}}\nolimits_{{\rm break}}^{{\rm ERR}} = {\frac{{\mathop {\left[ {{\frac{{\tilde{u}^{\prime}\mathop {\mathbf{W}}\nolimits^{*} {\tilde{\mathbf{B}}}\tilde{u}}}{{\mathop {\tilde{\sigma }}\nolimits^{2} }}} - {\rm tr}\mathop {{\tilde{\mathbf{B}}}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{*} } \right]}\nolimits^{2} }}{{\mathop {\tilde{\sigma }}\nolimits_{{\rm err}}^{2} }}}\mathop \sim \limits_{{\rm as}} \mathop \chi \nolimits^{2} (1) \\ \end{aligned} $$
(A19)

\( \mathop {\tilde{\sigma }}\nolimits_{err}^{2} \) is the asymptotic variance of the restriction of the null hypothesis, which is equal to:

$$ \begin{array}{l} \mathop {\tilde{\sigma }}\nolimits_{err}^{2} = \mathop {\left[ {{\frac{{\mathop {\tilde{\sigma }}\nolimits^{2} }}{{2\mathop {\tilde{\sigma }}\nolimits^{2} {\text{tr}}\mathop {{\tilde{\mathbf{B}^{\prime}}}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{*} \mathop {{\tilde{\mathbf{B}}}}\nolimits^{ - 1} \mathop {{\mathbf{W^{\prime}}}}\nolimits^{*} - \mathop {\tilde{b}{\tilde{\mathbf{D}}}}\nolimits^{ - 1} \mathop {\tilde{b}}\nolimits^{{}} }}}} \right]}\nolimits^{ - 1} \hfill \\ \to \tilde{b} = \left[ {\begin{array}{*{20}l} {2\mathop \sigma \nolimits^{2} {\text{tr}}\mathop {{\tilde{\mathbf{B}^{\prime}}}}\nolimits^{ - 1} {\mathbf{W^{\prime}}}\mathop {{\tilde{\mathbf{B}}}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{*} } \\ {\mathop {{\text{tr}}{\tilde{\mathbf{B}^{\prime}}}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits^{*} } \\ \end{array} } \right] \hfill \\ \to {\tilde{\mathbf{D}}} = \left[ {\begin{array}{*{20}c} {2\mathop \sigma \nolimits^{2} {\text{tr}}\mathop {{\tilde{\mathbf{B}^{\prime}}}}\nolimits^{ - 1} {\mathbf{W}}\mathop {{\tilde{\mathbf{B}}}}\nolimits^{ - 1} {\mathbf{W^{\prime}}}} & {\mathop {{\text{tr}}{\tilde{\mathbf{B}^{\prime}}}}\nolimits^{ - 1} {\mathbf{W}}} \\ {\mathop {{\text{tr}}{\tilde{\mathbf{B}^{\prime}}}}\nolimits^{ - 1} {\mathbf{W}}} & {{\frac{R}{{2\mathop {\tilde{\sigma }}\nolimits^{2} }}}} \\ \end{array} } \right] \hfill \\ \end{array} $$
(A20)

As in the previous case, the Multiplier of Eq. A19 can be generalized to treat with p different regimes. The extended model will be:

$$ \left. \begin{array} {l}y = x\beta + u \hfill \\ u = \mathop \rho \nolimits_{0} {\mathbf{W}}u + \sum\limits_{s = 1}^{p} {\mathop \rho \nolimits_{s} \mathop {\mathbf{W}}\nolimits_{s}^{*} u} + \varepsilon \hfill \\ \varepsilon \sim N(0,\mathop \sigma \nolimits^{2} I) \hfill \\ \end{array} \right\} $$
(A21)

The null hypothesis is again of the joint type:

$$ \begin{gathered} \left. {\begin{array}{*{20}l} {\mathop H\nolimits_{0} :\mathop \rho \nolimits_{1} = \mathop \rho \nolimits_{2} = \cdots = \mathop \rho \nolimits_{p} = 0} \hfill \\ {\mathop H\nolimits_{A} :\exists \mathop \rho \nolimits_{j} \ne 0} \hfill \\ \end{array} } \right\} \hfill \\\quad \Rightarrow \mathop {{\rm LM}}\nolimits_{{\rm break}}^{{\rm ERR}} = \left[ {\mathop {g\left( \varphi \right)}\nolimits_{{\left| {\mathop H\nolimits_{0} } \right.}} } \right]^{\prime } \mathop {\left[ {\mathop {{\mathbf{I}}\left( \varphi \right)}\nolimits_{{\left| {\mathop H\nolimits_{0} } \right.}} } \right]}\nolimits^{ - 1} \left[ {\mathop {g\left( \varphi \right)}\nolimits_{{\left| {\mathop H\nolimits_{0} } \right.}} } \right]\mathop \sim \limits_{{\rm as}} \mathop \chi \nolimits^{2} (p) \hfill \\ \end{gathered} $$
(A22)

The score will be obtained as in A16, with an equation of the type \( {\frac{{\tilde{u}^{\prime}\mathop {\mathbf{W}}\nolimits_{s}^{*} {\tilde{\mathbf{B}}}\tilde{u}}}{{\mathop {\tilde{\sigma }}\nolimits^{2} }}} - {\text{tr}}\mathop {{\tilde{\mathbf{B}}}}\nolimits^{ - 1} \mathop {\mathbf{W}}\nolimits_{s}^{*} \) for each of the p regimes considered. The Hessian and information matrices must be similarly extended.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mur, J., López, F. & Angulo, A. Instability in spatial error models: an application to the hypothesis of convergence in the European case. J Geogr Syst 12, 259–280 (2010). https://doi.org/10.1007/s10109-009-0101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-009-0101-0

Keywords

JEL Classification

Navigation