Skip to main content
Log in

Multi-objective route planning for dangerous goods using compromise programming

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

The transportation of dangerous goods (DG) can significantly affect the human and natural environment if accidents occur during the transportation process. Hong Kong is a large city with high population density and narrow streets. Due to the land constraints, vehicles carrying DG inevitably have to pass through densely populated areas or their vicinities. Therefore, safe DG transportation is of paramount importance. There is thus an urgent need to review and improve the way trucks carrying DG are being routed on the road networks. Routing of such vehicles should consider not only the operating cost, but also the safety of travelers in the network, the population potentially exposed, and the possible damage inflicted to the surrounding properties and facilities in the event of a DG incident. This research develops a novel methodology for the determination of optimal routes for DG transportation under conflicting objectives by means of the compromise programming approach. With the support of geographical information system (GIS), a case study is carried out for the transportation of DG in the road network of Hong Kong. The experimental results confirm the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abkowitz M, Cheung P (1988) Developing a risk/cost framework for routing truck movements of hazardous materials. Accid Anal Prev 20(1):39–51

    Article  Google Scholar 

  • Baja S, Chapman DM, Dragovich D (2007) Spatial based compromise programming for multiple criteria decision making in land use planning. Environ Model Assess 12(3):171–184

    Article  Google Scholar 

  • Batta R, Chiu S (1988) Optimal obnoxious paths on a network: transportation of hazardous materials. Oper Res 36(1):84–92

    Article  Google Scholar 

  • Benayoun R, De Montgolfier J, Tergny J, Laritchev O (1971) Linear programming with multiple objective functions: step method (STEM). Math Program 1(1):366–375

    Article  Google Scholar 

  • Brainard J, Lovett A, Parfitt J (1996) Assessing hazardous waste transport risks using a GIS. Int J Geogr Inf Sci 10(7):831–849

    Article  Google Scholar 

  • Chen W, Wiecek MM, Zhang JZ (1999) Quality utility—a compromise programming approach to robust design. J Mech Des 121(2):179–187

    Article  Google Scholar 

  • Chin S, Cheung P (1989) Bicriterion routing scheme for nuclear spent fuel transportation. Transp Res Rec 1245:60–64

    Google Scholar 

  • Dijkstra EW (1959) A note on two problems in connection with graphs. Numer Math 1(1):269–271

    Article  Google Scholar 

  • Erhkut E, Ingolfsson A (2005) Transport risk models for hazardous materials: revisited. Oper Res Lett 33(1):81–89

    Article  Google Scholar 

  • Erkut E, Gzara F (2008) Solving the hazmat transport network design problem. Comput Oper Res 35(7):2234–2247

    Article  Google Scholar 

  • Erkut E, Ingolfsson A (2000) Catastrophe avoidance models for hazardous materials route planning. Transp Sci 34(2):165–179

    Article  Google Scholar 

  • Erkut E, Verter V (1995) A framework for hazardous materials transport risk assessment. Risk Anal 15(5):589–601

    Article  Google Scholar 

  • Erkut E, Verter V (1998) Modeling of transport risk for hazardous materials. Oper Res 46(5):625–642

    Article  Google Scholar 

  • FHWA (1994) Guidelines for Applying Criteria to Designate Routes for Transporting Hazardous Materials. Report FHWA-SA-94-083, Federal Highway Administration, USA

  • Gopalan R, Kolluri S, Batta R, Karwan M (1990) Modeling equity of risk in the transportation of hazardous materials. Oper Res 38(6):961–973

    Article  Google Scholar 

  • Huang B, Cheu RL, Liew YS (2004) GIS and genetic algorithms for HAZMAT route planning with security considerations. Int J Geogr Inf Sci 18(8):769–787

    Article  Google Scholar 

  • Huang B, Fery P, Xue LL, Wang YJ (2008) Seeking the Pareto front for multiobjective spatial optimization problems. Int J Geogr Inf Sci 22(5):507–526

    Article  Google Scholar 

  • Joy D, Johnson P, Clarke D, Mcguire S (1981) Predicting transportation routes for radioactive waste. In: Proc symp on waste manag, 1981, Tucson, Arizona, American Nuclear Society, pp 415–425

  • Kara BY, Verter V (2004) Designing a road network for hazardous materials transportation. Transp Sci 38(2):188–196

    Article  Google Scholar 

  • Karkazis J, Boffey TB (1995) Optimal location of routes for vehicles transporting hazardous materials. Eur J Oper Res 86(2):201–215

    Article  Google Scholar 

  • Lakshminarayan PG, Johnson SR, Bouzaher A (1995) A multiobjective approach to integrating agricultural economic and environmental policy. J Environ Manag 45(4):365–378

    Article  Google Scholar 

  • Lepofsky M, Abkowitz M (1993) Transportation hazard analysis in integrated GIS environment. J Transp Eng 119(2):239–254

    Article  Google Scholar 

  • Linder-Dutton L, Batta R, Karwan MH (1991) Equitable sequence of a given set of hazardous materials shipments. Transp Sci 25(2):124–137

    Article  Google Scholar 

  • List G, Mirchandani P (1991) An integrated network/planar multiobjective model for routing and siting for hazardous materials and wastes. Transp Sci 25(2):146–156

    Article  Google Scholar 

  • Miller-Hooks E, Mahmassani H (1998) Optimal routing of hazardous materials in stochastic, time-varying transportation networks. Transp Res Rec 1645:143–151

    Article  Google Scholar 

  • Patel MH, Horowitz AJ (1994) Optimal routing of hazardous materials considering risk of spill. Transp Res Part A: Policy and Practice 28(2):119–132

    Article  Google Scholar 

  • Pereira JMC, Duckstein L (1993) A multiple criteria decision making approach to GIS-based land suitability evaluation. Int J Geogr Inf Sci 7(5):407–424

    Article  Google Scholar 

  • Revelle C, Cohon J, Shobrys D (1991) Simultaneous siting and routing in the disposal of hazardous wastes. Transp Sci 25(2):138–145

    Article  Google Scholar 

  • Romero C, Rehman T (1989) Multiple criteria analysis for agricultural decisions. Elsevier, Amsterdam

    Google Scholar 

  • Saaty TL (1990) Multicriteria decision making: the analytic hierarchy process—planning priority setting, resource allocation. McGraw-Hill, New York

    Google Scholar 

  • Shih LH, Lin YT (2003) Multicriteria optimization for infectious medical waste collection system planning. Period Hazard Toxic Radioac Waste Manag 7(2):78–85

    Article  Google Scholar 

  • Steuer RE, Choo RU (1983) An interactive weighted Tchebycheff procedure for multiple objective programming. Math Program 26(1):326–344

    Article  Google Scholar 

  • Strager MP, Rosenberger RS (2007) Aggregating high-priority landscape areas to the parcel level: an easement implementation tool. J Environ Manag 82(2):290–298

    Article  Google Scholar 

  • Thurston DL (1991) A formal method for subjective design evaluation with multiple attributes. Res Eng Des 3(2):105–122

    Article  Google Scholar 

  • Turnquist MA, List GF (1993) Multiobjective policy analysis of hazardous materials routing. In: Moses LN, Lindstrom D (eds) Transportation of hazardous materials. Kluwer, Boston, pp 103–116

    Google Scholar 

  • Verter V, Kara BY (2008) A path-based approach for hazmat transport network design. Manag Sci 54(1):29–40

    Article  Google Scholar 

  • Wierzbicki AP (1980) The use of reference objectives in multiobjective optimization. In: Fandel G, Gal T (eds) Multiple criteria decision making theory and applications. Springer, Berlin, pp 468–486

    Google Scholar 

  • Yu PL, Leitmann G (1974) Compromise solutions, dominations structures, and Salukvadze’s solution. J Optim Theory Appl 13(3):362–378

    Article  Google Scholar 

  • Zeleny M (1973) Compromise programming. In: Cochrane JL, Zeleny M (eds) Multiple criteria decision making. University of South Carolina Press, Columbia, pp 262–301

    Google Scholar 

  • Zeleny M (1982) Multiple criteria decision making. McGraw-Hill, New York

    Google Scholar 

  • Zhang WH (2003) A compromise programming method using multibounds formulation and dual approach for multicriteria structural optimization. Int J Numer Methods Eng 58(4):661–678

    Article  Google Scholar 

  • Zhang J, Hodgson J, Erkut E (2000) Using GIS to assess the risks of hazardous materials transport in networks. Eur J Oper Res 121(2):316–329

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongrong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Leung, Y. Multi-objective route planning for dangerous goods using compromise programming. J Geogr Syst 13, 249–271 (2011). https://doi.org/10.1007/s10109-010-0124-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-010-0124-6

Keywords

JEL Classification

Navigation