Skip to main content

Advertisement

Log in

Geosimulation of urban growth and demographic decline in the Ruhr: a case study for 2025 using the artificial intelligence of cells and agents

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

The Ruhr is an “old acquaintance” in the discourse of urban decline in old industrialized cities. The agglomeration has to struggle with archetypical problems of former monofunctional manufacturing cities. Surprisingly, the image of a shrinking city has to be refuted if you shift the focus from socioeconomic wealth to its morphological extension. Thus, it is the objective of this study to meet the challenge of modeling urban sprawl and demographic decline by combining two artificial intelligent solutions: The popular urban cellular automaton SLEUTH simulates urban growth using four simple but effective growth rules. In order to improve its performance, SLEUTH has been modified among others by combining it with a robust probability map based on support vector machines. Additionally, a complex multi-agent system is developed to simulate residential mobility in a shrinking city agglomeration: residential mobility and the housing market of shrinking city systems focuses on the dynamic of interregional housing markets implying the development of potential dwelling areas. The multi-agent system comprises the simulation of population patterns, housing prices, and housing demand in shrinking city agglomerations. Both models are calibrated and validated regarding their localization and quantification performance. Subsequently, the urban landscape configuration and composition of the Ruhr 2025 are simulated. A simple spatial join is used to combine the results serving as valuable inputs for future regional planning in the context of multifarious demographic change and preceding urban growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

CA:

Cellular automaton

CWD:

Cost-weighted distance

IDW:

Inverse distance-weighted

MAS:

Multi-agent system

MC:

Monte Carlo iterations

MRV:

Multiple resolution validation

NRW:

North Rhine-Westphalia

OOP:

Object-oriented programming

ReHoSh:

Residential mobility and the housing market of shrinking city systems

ROC:

Receiver operating characteristic

SLEUTH:

Slope, land-use, exclusion, urban, transport, hillshade

SVM:

Support vector machines

UGM:

Urban growth model

UGMr:

Urban growth model with reduced input data sets

UGMr–SVM:

Urban growth model with reduced input data sets and a probability map derived from support vector machines as exclusion layer

XULU:

eXtendable Unified Land Use Modelling Platform

References

  • Ajzen I (1985) From Intentions to actions: a theory of planned behavior. In: Kuhl J and Beckmann J (eds) Action control: from cognition to behavior. Springer, Berlin, pp 11–38

  • Alberti M, Waddell P (2000) An integrated urban development and ecological simulation model. Integr Assess 1:215–227

    Article  Google Scholar 

  • Alcamo J, Kok K, Busch G, Priess JA, Eickhout B, Rounsevell M, Rothmann DS & Heistermann M (2006) Searching for the future of land: scenarios from the local to global scale. In: Lambin EF and Geist HJ (eds) Land-use and land-cover change: local processes and global impacts. Springer, Berlin, pp 137–157

  • Anderson PW (1972) More is different—broken symmetry and the nature of the hierarchical structure of science. Science 177(4047):393–396

    Article  Google Scholar 

  • Antrop M (2004) Landscape change and the urbanization process in Europe. Landsc Urban Plan 67(1–4):9–26

    Article  Google Scholar 

  • Arentz O, Eekhoff J, Wolfgramm C (2010) Zur Finanzmarktkrise: Die Rolle der Immobilienbewertung. Institute for Economic Policy, Köln

    Google Scholar 

  • Barnsley MJ, Moller-Jensen L, & Barr SL (2003) Inferring urban land use by spatial and structural pattern recognition. In: Donnay J-P, Barnsley MJ, Longley PA (eds) Remote sensing and urban analysis: GISDATA 9. Pion Ltd, London, pp 115–144

  • Batty M (2005) Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals. The MIT Press, Boston

    Google Scholar 

  • Batty M, Xie Y (1997) Possible urban automata. Environ Plan 24(2):175–192

    Article  Google Scholar 

  • BBSR (2012) BBSR-analysen KOMPAKT. Bonn: Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR) im Bundesamt für Bauwesen und Raumordnung

  • Beckmann KJ, Brüggemann U, Gräfe J, Huber F, Meiners H, Mieht P, Moeckel R, Mühlhans H, Rindsfüser G, Schaub H, Schrader R, Schürmann C, Schwarze B, Spiekermann K, Strauch D, Spahn M, Wagner P & Wegener M (2007) ILUMASS: integrated land-use modelling and transport system simulation. Final report. Berlin. Retrieved from http://www.spiekermann-wegener.de/pro/pdf/ILUMASS_Endbericht.pdf (last access: 2013-04-04)

  • Benenson I, Torrens PM (2004) Geosimulation: automata-based modeling of urban phenomena. John Wiley & Sons, West Sussex

    Book  Google Scholar 

  • Bethell T (2006) The search for artificial intelligence. Am Spect 39(6):26–35

    Google Scholar 

  • Blotevogel HH (2006) Gemeindetypisierung Nordrhein-Westfalens nach demographischen Merkmalen. In: R Danielzyk & H Kilper (eds) Räumliche Konsequenzen des Demographischen Wandels Teil 8: Demographischer Wandel in ausgewählten Regionaltypen Nordrhein-Westfalens – Herausforderungen und Chancen für die regionale Politik. Akademie für Raumforschung und Landesplanung - ARL, Hannover, pp 17–33

  • BORISplus.NRW (ed) (2012) Gutachterausschüsse für Grundstückswerte in NRW. Retrieved from http://www.boris.nrw.de/borisplus/portal/start.do (last access: 2013-04-04)

  • Briassoulis H (2000) Analysis of land use change: theoretical and modeling approaches. Morgantown: The Web Book of Regional Science. Retrieved from http://www.rri.wvu.edu/WebBook/Briassoulis/contents.htm (last access: 2013-04-04)

  • Brown DG, Walker R, Manson S & Seto K (2004) Modeling land use and land cover change. In: Gutman G, Janetos AC, Jusitce CO, Moran EF, Mustard JF, Rindfuss RR, Skole D & Turner II BL (eds) Land change science—observing, monitoring and understanding trajectories of change on the earth’s surface. Springer, Berlin, pp 395–410

  • Bucher HJ, Schlömer C (2003) Der demographische Wandel und seine Wohnungsmarktrelevanz. vhw Forum Wohneigentum 3: 121–126

  • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167

    Article  Google Scholar 

  • Chaudhuri G, Clarke KC (2013) The SLEUTH land use change model: a review. Int J Environ Resour Res 1(1):88–104

    Google Scholar 

  • Clarke KC (2003) The limits of simplicity: toward geocomputational honesty in urban modeling. Proceedings of the 7th International Conference on GeoComputation. University of Southampton, Southampton, UK 8-10 September. Retrieved from http://www.geocomputation.org/2003/Abstracts/Clarke_Abs.pdf (last access: 2013-07-12)

  • Clarke KC, Hoppen S, Gaydos L (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plan 24:247–262

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  • Couch C, Karecha J, Nuissl H, Rink D (2005) Decline and sprawl: an evolving type of urban development—observed in Liverpool and Leipzig. Eur Plan Stud 13(1):117–136

    Article  Google Scholar 

  • Couclelis H (2001) Why i no longer work with agents. In: Meeting the challenge of complexity proceedings of a special workshop on land-use/land-cover change October 4–7, 2001, Irvine, California CIPEC Collaborative Report CCR-3, pp 14–16

  • Danielzyk R (2006) Demographische Entwicklungen in Nordrhein-Westfalen. Befunde – Prognosen – Erklärungsansätze. In: Räumliche Konsequenzen des Demographischen Wandels Teil 8: Demographischer Wandel in ausgewählten Regionaltypen Nordrhein-Westfalens – Herausforderungen und Chancen für die regionale Politik, pp 8–16

  • Dietzel C, Clarke KC (2007) Toward optimal calibration of the SLEUTH land use change model. Trans GIS 11(1):29–45

    Article  Google Scholar 

  • Dransfeld E (2007) Grundstückswertermittlung im Stadtumbau: Verkehrswertermittlung bei Schrumpfung und Leerstand. BMVBS/BBR, Bonn

    Google Scholar 

  • Drucker H, Wu D, Vapnik VN (1999) Support vector machines for spam categorization. IEEE Trans Neural Networks 10(5):1048–1054

    Article  Google Scholar 

  • Geoghegan J, Pritchard jr. LP, Ogneva-Himmelberger Y, Chowdhury RR, Sanderson S, Turner II BL (1998) “Socializing the Pixel” and “Pixelizing the Social” in land-use and land-cover change. In: Liverman D, Moran EF, Rindfuss RR, Stern PC (eds) People and pixels: linking remote sensing and social science. Natl Academy Pr, Washington, pp 51–69

  • Goetzke R (2012) Entwicklung eines fernerkundungsgestützten Modellverbundes zur Simulation des urban-ruralen Landnutzungswandels in Nordrhein-Westfalen. Hamburg: disserta Verlag

  • Goetzke R, Over M, Braun M (2006) A method to map land-use change and urban growth in North Rhine-Westphalia (Germany). Proceedings of the 2nd Workshop of the EARSeL SIG on Land Use and Land Cover, pp 102–110

  • Grüber-Töpfer W, Kamp-Murböck M, Mielke B (2008) 2. Demographische Entwicklung in NRW. In: Danielzyk R, Meyer C, Grüber-Töpfer W (eds), Demographischer Wandel in Nordrhein-Westfalen. Institut für Landes- und Stadtentwicklungsforschung und Bauwesen des Landes Nordrhein-Westfalen (ILS NRW), Dortmund, pp 7–31

  • Guo Q, Kelly M, Graham CH (2005) Support vector machines for predicting distribution of sudden oak death in California. Ecol Model 182(1):75–90

    Article  Google Scholar 

  • Haase D, Lautenbach S, Seppelt R (2010) Modeling and simulating residential mobility in a shrinking city using an agent-based approach. Environ Model Softw 25(10):1225–1240

    Article  Google Scholar 

  • Haase D, Haase A, Kabisch N, Kabisch S, Rink D (2012) Actors and factors in land-use simulation: the challenge of urban shrinkage. Environ Model Softw 35:92–103

    Article  Google Scholar 

  • Hägerstrand T (1967) The computer and the geographer. Trans Inst Br Geogr 42:1–19

    Article  Google Scholar 

  • Hannemann C (2002) „Schrumpfende Städte “: Überlegungen zur Konjunktur einer vernachlässigten Entwicklungsoption für Städte. Infobrief Stadt 2030:3–8

    Google Scholar 

  • Heimpold G, Ebert M (2012) 5. Konferenz „Analysen und Politik für Ostdeutschland–aus der Forschung des iwh—ein Bericht. Wirtschaft im Wandel 18:60–67

    Google Scholar 

  • Hilber CAL (2007) Der Einfluss von Preisänderungen auf Angebot und Nachfrage von Immobilien: Theorie, empirische Evidenz und Implikationen. Zeitschrift für Immobilienökonomie 7:5–20

    Google Scholar 

  • Hirschle M, Schürt A (2008) Suburbanisierung... und kein Ende in Sicht? Intraregionale Wanderungen und Wohnungsmärkte. Informationen zur Raumentwicklung 3(4):211–226

    Google Scholar 

  • Hostert P (2007) Advances in urban remote sensing: examples from Berlin (Germany). In: Netzband DM, Stefanov DWL, Redman PC (eds) Applied remote sensing for urban planning, governance and sustainability. Springer, Berlin, pp 37–51

  • Hsu C-W, Chang C-C, Lin C-J (2010) A practical guide to support vector classification. Taipei: Department of Computer Science National Taiwan University. Retrieved from http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf (last access: 2013-07-12)

  • Huang B, Xie C, Tay R (2010) Support vector machines for urban growth modeling. GeoInformatica 14(1):83–99

    Article  Google Scholar 

  • Hughes GF (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory 14(1):55–63

    Article  Google Scholar 

  • IT NRW (2013) Landesdatenbank NRW. Landesdatenbank NRW

  • Jain A, Schmithals J (2009) Motive für die Wanderung von West- nach Ostdeutschland und Rückkehrtypen. In: Cassens I, Luy M, Scholz R (eds) Die Bevölkerung in Ost- und Westdeutschland. Springer, Berlin, pp 313–333

  • Kalter F (1997) Wohnortwechsel in Deutschland. Leske und Budrich, Opladen

    Book  Google Scholar 

  • Knapp W (1997) Perspektiven des Bonner Raums in der Europäischen Metropolregion Rhein-Ruhr – Von der „Hauptstadtregion Bonn/Rhein-Sieg zur „Bundesstadt“ in der Städte-Region. Berichte zur deutschen Landeskunde 71(2):207–227

    Google Scholar 

  • Koch A (2003) Sozialgeographische agentenbasierte Geosimulation – Zur Komplementarität von Raumsemantik und Raummodell. In: Koch A, Mandl P (eds) Multi-Agenten-Systeme in der Geographie. Klagenfurter Geographische Schriften, Klagenfurt, pp 35–65

  • Koch A, Mandl P (2003) Einleitung zum Thema „Multi-Agenten-Systeme in der Geographie“. In: Koch A, Mandl P (eds) Multi-agenten-systeme in der geographie. Klagenfurter Geographische Schriften, Klagenfurt, pp 1–5

  • Koomen E, Borsboom-van Beurden J (2011) Land-use modelling in planning practice. Springer, Dordrecht

    Book  Google Scholar 

  • Kroll F, Haase D (2010) Does demographic change affect land use patterns?—A case study from Germany. Land Use Policy 27(3):726–737

    Article  Google Scholar 

  • Lambin EF, Geist HJ (2006) Introduction: local processes with global impacts. In: Lambin EF, Geist HJ (eds) Land-use and land-cover change: local processes and global impacts. Springer, Berlin, pp 1–8

  • Landis J (2001) CUF, CUF II, and CURBA: a family of spatially explicit urban growth and land-use policy simulation models. In: Brail R, Klostermann R (eds) Planning support systems: integrating geographic information systems, models, and visualization tools. Esri Press, Redlands, pp 159–200

  • Langford M, Unwin DJ (1994) Generating and mapping population density surfaces within a geographical information system. Cartogr J 31(1):21–26

    Article  Google Scholar 

  • Lauf S, Haase D, Hostert P, Lakes T, Kleinschmit B (2012) Uncovering land-use dynamics driven by human decision-making—a combined model approach using cellular automata and system dynamics. Environ Model Softw 27–28:71–82

    Article  Google Scholar 

  • Lee DB (1975) Requiem for large-scale models. SIGSIM Simul Dig 6(2–3):16–29

    Article  Google Scholar 

  • Lesschen JP, VerburgPH, Staal SJ (2005) Statistical methods for analysing the spatial dimension of changes in land use and farming systems. Wageningen: LUCC Report Series 7 (IGBP)

  • Lochl M, Burgle M, Axhausen KW (2007) Implementierung des integrierten Flächennutzungsmodells UrbanSim fur den Grossraum Zurich: Ein Erfahrungsbericht. DISP-Zürich 168:13–25

    Google Scholar 

  • Loibl W, Peters-Anders J (2003) Transition von suburbanen und ländlichen Landschaften und deren Simulation mit Agenten. In: Koch A, Mandl P (eds) Multi-Agenten-Systeme in der Geographie. Klagenfurter Geographische Schriften, Klagenfurt, pp 89–123

  • Loibl W, Toetzer T (2003) Modeling growth and densification processes in suburban regions–simulation of landscape transition with spatial agents. Environ Model Softw 18(6):553–563

    Article  Google Scholar 

  • Macal CM, North MJ (2010) Tutorial on agent-based modelling and simulation. J Simul 4(3):151–162

    Article  Google Scholar 

  • Mandl P (2003) Multi-Agenten-Simulation und Raum - Spielwiese oder tragfähiger Modellierungsansatz in der Geographie? In: Koch A, Mandl P (eds) Multi-Agenten-Systeme in der Geographie. Klagenfurter Geographische Schriften, Klagenfurt, pp 5–35

  • Mankiw NG, Taylor MP (2004) 5. Grundzüge der Volkswirtschaftslehre. Stuttgart: Schäffer-Poeschel Verlag

  • Mennis J, Hultgren T (2005) Dasymetric mapping for disaggregating coarse resolution population data. Proceedings of the 22nd Annual International Cartographic Conference, pp 9–16

  • Messina JP, Evans TP, Manson SM, Shortridge AM, Deadman PJ, Verburg PH (2008) Complex systems models and the management of error and uncertainty. J Land Use Sci 3(1):11–25

    Article  Google Scholar 

  • Mewes T (2011) The impact of the spectral dimension of hyperspectral datasets on plant disease detection. ULB, Bonn

    Google Scholar 

  • Mielke B, Münter A (2008) 2. Demographischer Wandel und Flächeninanspruchnahme. In: Danielzyk R, Meyer C, Grüber-Töpfer W (eds) Demographischer Wandel in Nordrhein-Westfalen. Institut für Landes- und Stadtentwicklungsforschung und Bauwesen des Landes Nordrhein-Westfalen (ILS NRW), Dortmund, pp 58–64

  • Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens 66(3):247–259

    Article  Google Scholar 

  • MUNLV (ed) (2009) Umweltbericht NRW 2009. Düsseldorf: Ministerium für Umwelt, Naturschutz, Landwirtschaft und Verbraucherschutz (MUNLV) NRW

  • Nara A, Torrens PM (2005) Simulating inner city gentrification using hybrid models of cellular automata and multi-agent systems. Dept. of Geography, University of Utah, Salt Lake City

    Google Scholar 

  • Nguyen MH, de la Torre F (2010) Optimal feature selection for support vector machines. Pattern Recognit 43(3):584–591

    Article  Google Scholar 

  • Okwuashi O, McConchie J, Nwilo P, Eyo E (2009) Stochastic GIS cellular automata for land use change simulation: application of a kernel based model. Proceedings of the 10th International Conference on GeoComputation University of New South Wales, Sydney, Australia. 30 November–02 December 2009, pp 1–7

  • Platt JC (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers 61–74

  • Pontius RG (2000) Quantification error versus location error in comparison of categorical maps. Photogramm Eng Remote Sensing 66(8):1011–1016

    Google Scholar 

  • Pontius RG, Schneider LC (2001) Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ 85(1–3):239–248

    Article  Google Scholar 

  • Pontius RG, Huffaker D, Denman K (2004) Useful techniques of validation for spatially explicit land-change models. Ecol Model 179(4):445–461

    Article  Google Scholar 

  • Pontius RG, Boersma W, Castella J-C, Clarke K, Nijs T, Dietzel C, Duan Z, Fotsing E, Goldstein N, Kok K, Koomen E, Lippitt C, McConnel W, Sood AM, Pijanowksi B, Pithadia S, Sweeney S, Trung T, Veldkamp A, Verburg P (2008) Comparing the input, output, and validation maps for several models of land change. Ann Reg Sci 42(1):11–37

    Article  Google Scholar 

  • Rafiee R, Mahiny AS, Khorasani N, Darvishsefat AA, Danekar A (2009) Simulating urban growth in Mashad City, Iran through the SLEUTH model (UGM). Cities 26(1):19–26

    Article  Google Scholar 

  • Railsback SF, Lytinen SL, Jackson SK (2006) Agent-based simulation platforms: review and development recommendations. Simulation 82(9):609–623

    Article  Google Scholar 

  • Regionalverband Ruhr (ed) (2011) ruhrFIS-Flächeninformationssystem Ruhr Erhebung der Siedlungsflächenreserven 2011 in den Flächennutzungsplänen und im regionalen Flächennutzungsplan. Essen: metropeleruhr

  • Rienow A, Goetzke R (2014) Supporting SLEUTH—enhancing a cellular automaton with support vector machines for urban growth modeling. Computers, Environment and Urban Systems

  • Rindfuss RR, Stern PC (1998) Linking remote sensing and social science: the need and the challenges. In: Liverman D, Moran EF, Rindfuss RR, Stern PC (eds) People and pixels: linking remote sensing and social science. Natl Academy Pr, Washington, pp 1–27

  • Rindfuss RR, Entwisle B, Walsh SJ, An L, Badenoch N, Brown DG, Deadman P, Evans TP, Fox J, Geoghegan J, Gutmann M, Kelly M, Linderman M, Liu J, Malanson GP, Mena CP, Messina JP, Moran EF, Parker DC, Parton W, Prasartkul P, Robinson DT, Sawangdee Y, Vanwey LK, Verburg PH (2008) Land use change: complexity and comparisons. J Land Use Sci 3(1):1–10

    Article  Google Scholar 

  • Rossi PH (1980) Why families move. Sage Publications, Beverly Hills

    Google Scholar 

  • Rucker R (1999) Seek! Selected nonfiction. Four Walls Eight Windows, New York

    Google Scholar 

  • Ruiz M, Lopez F, Paez A (2012) Comparison of thematic maps using symbolic entropy. Int J Geogr Inf Sci 26:413–439

    Article  Google Scholar 

  • Rykiel EJ (1996) Testing ecological models: the meaning of validation. Ecol Model 90(3):229–244

    Article  Google Scholar 

  • Schlegelmilch F (2009) Zwischennutzen–leichter gesagt als getan. Informationen zur Raumentwicklung 7:493–502

    Google Scholar 

  • Schmitz M, Bode T, Thamm H-P, Cremers AB (2005) XULU—a generic JAVA-based platform to simulate land use and land cover change (LUCC). MODSIM 2007 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, December 2007, pp 4–7

  • Schneider T (2007) Urban and environmental information system: application of remote sensing for planning and governance—potentials and problems. In: Netzband DM, Stefanov DWL, Redman PC (eds) Applied remote sensing for urban planning, governance and sustainability. Springer, Berlin, pp 199–220

  • Schoettker B (2003) Monitoring statewide urban development using multitemporal multisensoral satellite data covering a 40-year time span in north Rhine-Westphalia (Germany). Proceedings of the SPIE 10th International Symposium on Remote Sensing, 8–12th September 2003, Barcelona, pp 252–261

  • Scholl HJ (2003) Agent-based and system dynamics modeling: a call for cross study and joint research. Proceedings of the 34th Annual Hawaii International Conference on System Sciences, 3–6 Jan 2001, pp 1–8. Retrieved from http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=926296 (last access: 2013-04-04)

  • Siedentop S (2006) Urban Sprawl - verstehen, messen, steuern. Ansatzpunkte für ein empirisches Mess- und Evaluationskonzept der urbanen Siedlungsentwicklung. DISP 160:23–35

    Google Scholar 

  • Siedentop S, Fina S (2008) Urban sprawl beyond growth: from a growth to a decline perspective on the costs of sprawl. In: 44th Iscocarp Congress, September 2008. Retrieved from http://www.uni-stuttgart.de/ireus/publikationen/ISOCARP_Paper_Siedentop-Fina.pdf (last access: 2013-04-04)

  • Siedentop S, Kausch S (2004) Die räumliche Struktur des Flächenverbrauchs in Deutschland – Eine auf Gemeindedaten basierende Analyse für den Zeitraum 1997 bis 2001. Raumforsch Raumordn 62(1):36–49

    Article  Google Scholar 

  • Silva EA, Clarke KC (2005) Complexity, emergence and cellular urban models: lessons learned from applying SLEUTH—to two Portuguese metropolitan areas. Eur Plan Stud 13(1):93–115

    Article  Google Scholar 

  • Silva E, Wu N (2012) Surveying models in urban land studies. J Plan Lit 27:1–14

    Article  Google Scholar 

  • Spiegel E (2004) Landesentwicklung bei Bevölkerungsrückgang. Auswirkungen auf die Raum- und Siedlungsstruktur in Baden-Württemberg. Räumliche Konsequenzen des demographischen Wandels, Teil 3. Hannover: Verlag der ARL

  • Steven DP, Hoffman M, Parker DC, Manson SM, Manson SM, Janssen MA, Hoffman M, Deadman P (2002) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93:314–337

    Google Scholar 

  • Strauch D (2003) Ein neuer mikroskopisch-dynamischer Modellansatz für eine integrierte Flächennutzungs- und Verkehrsplanung: das Simulationsmodell ILUMASS. In: Koch A, Mandl P (eds) Multi-agenten-systeme in der geographie. Klagenfurter Geographische Schriften, Klagenfurt, pp 123–139

  • Sudhira HS, Ramachandra TV, Wytzisk A, Jeganathan C (2005) Framework for integration of cellular automata and agent-based models for simulating urban sprawl dynamics. Centre of Ecological Sciences, Indian Institute of Science, Bangalore

    Google Scholar 

  • Thomas D, Fuhrer U, Quaiser-Pohl C (2008) Akteure der Gentrification und ihre Ortsbindung. Kolner Z Soz Sozpsychol 60:340–367

    Article  Google Scholar 

  • Tobler W (1975) Cellular geography. In: Gale S, Ollson G (eds) Philosophy in geography. D. Reidel Publishing Company, Dordrecht, pp 379–386

  • Ulam S (1952) Random processes and transformations. In: Proceedings of the International Congress on Mathematics 2, Cambridge university press, Cambridge, pp 264–275

  • Unwin DJ (1995) Geographical information systems and the problem of ‘error and uncertainty’. Prog Hum Geogr 19(4):549–558

    Article  Google Scholar 

  • Valbuena D, Verburg PH, Bregt AK (2008) A method to define a typology for agent-based analysis in regional land-use research. Agric Ecosyst Environ 128(1–2):27–36

    Article  Google Scholar 

  • Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  • Vapnik V (1998) Statistical learning theory. John Wiley & Sons, New York

    Google Scholar 

  • Verburg PH (2006) Modeling land-use and land-cover change. In: Lambin EF, Geist HJ (eds) Land-use and land-cover change: local processes and global impacts. Springer, Berlin, pp 17–136

  • Verburg PH, Soepboer W, Veldkamp A, Limpiada R, Espaldon V, Mastura SSA (2002) Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ Manag 30(3):391–405

    Article  Google Scholar 

  • Verburg PH, Schot P, Dijst M, Veldkamp A (2004a) Land use change modelling: current practice and research priorities. GeoJournal 61(4):309–324

    Article  Google Scholar 

  • Verburg PH, van Eck JRR, de Nijs TCM, Dijst MJ, Schot P (2004b) Determinants of land-use change patterns in the Netherlands. Environ Plan 31(1):125–150

    Article  Google Scholar 

  • Visser H (2004) The MAP COMPARISON KIT: methods, software and applications. Maastricht: Research Institute for Knowledge Systems (RIKS). Retrieved from http://storage.riks.nl/pub/MCK/MCK_Reader.pdf (last access: 2013-04-04)

  • Von Neumann J (1951) The general and logical theory of automata. Cerebral mechanisms in behavior, 1–41

  • Waddell P, Wang L, Liu X (2008) UrbanSim: an evolving planning support system for evolving communities. Planning Support Systems for Cities and Regions, 103–138

  • Waske B, van der Linden S, Benediktsson JA, Rabe A, Hostert P (2010) Sensitivity of support vector machines to random feature selection in classification of hyperspectral data. IEEE Trans Geosci Remote Sens 48(7):2880–2889

    Article  Google Scholar 

  • Wegener M (2011) From macro to micro—how much micro is too much? Transp Rev 31(2):161–177

    Article  Google Scholar 

  • Westerheide P, Dick CD (2010) Determinanten für die langfristige Wertentwicklung von Wohnimmobilien - Gutachten im Auftrag der Arbeitsgemeinschaft Baden-Württembergischer Bausparkassen. ZEW, Mannheim

    Google Scholar 

  • White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environ Plan A 25(8):1175–1199

    Article  Google Scholar 

  • Wood CH, Skole D (1998) Linking satellite, census, and survey data to study deforestation in the Brazilian Amazon. In: Liverman D, Moran EF, Rindfuss RR, Stern PC (eds) People and pixels: linking remote sensing and social science. Natl Academy Pr, Washington, pp 70–93

  • Wu N, Silva EA (2010) Artificial intelligence solutions for urban land dynamics: a review. J Plan Lit 24(3):246–265

    Article  Google Scholar 

  • Wu F, Yeh AG-O (1997) Changing spatial distribution and determinants of land development in Chinese cities in the transition from a centrally planned economy to a socialist market economy: a case study of Guangzhou. Urban Stud 34(11):1851–1879

    Article  Google Scholar 

  • Wu X, Hu Y, He HS, Bu R, Onsted J, Xi F (2008) Performance evaluation of the SLEUTH model in the Shenyang metropolitan area of Northeastern China. Environ Model Assess 14(2):221–230

    Article  Google Scholar 

  • Xie C (2006) Support vector machines for land use change modeling. UCGE Reports, Calgary

    Google Scholar 

  • Yang Q, Li X, Shi X (2008) Cellular automata for simulating land use changes based on support vector machines. Comput Geosci 34(6):592–602

    Article  Google Scholar 

Download references

Acknowledgments

This study was carried out in the Remote Sensing Research Group (RSRG, Department of Geography, University of Bonn) with the support of Gunter Menz (RSRG) and Kerstin Voß (University of Education Heidelberg, Department of Geography). For the provision of the land-use data, we would like to thank the project “Visualisierung der Landnutzung und des Flächenverbrauchs in Nordrhein-Westfalen auf der Basis von Satellitenbildern” funded by the Ministry for Climate Protection, Environment, Agriculture, Nature Conservation and Consumer Protection of the State of North Rhine-Westphalia. Last but not least, we are grateful to Miriam Halfmann (University of Bonn), and Annette Ortwein (University of Bonn) who gave us competent linguistic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Rienow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rienow, A., Stenger, D. Geosimulation of urban growth and demographic decline in the Ruhr: a case study for 2025 using the artificial intelligence of cells and agents. J Geogr Syst 16, 311–342 (2014). https://doi.org/10.1007/s10109-014-0196-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-014-0196-9

Keywords

JEL Classification

Navigation