Skip to main content
Log in

The logic transformations for reducing the complexity of the discernibility function-based attribute reduction problem

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

The basic solution for locating an optimal reduct is to generate all possible reducts and select the one that best meets the given criterion. Since this problem is NP-hard, most attribute reduction algorithms use heuristics to find a single reduct with the risk to overlook for the best ones. There is a discernibility function (DF)-based approach that generates all reducts but may fail due to memory overflows even for datasets with dimensionality much below the medium. In this study, we show that the main shortcoming of this approach is its excessively high space complexity. To overcome this, we first represent a DF of \(n\) attributes by a bit-matrix (BM). Second, we partition the BM into no more than \(n-1\) sub-BMs (SBMs). Third, we convert each SBM into a subset of reducts by preventing the generation of redundant products, and finally, we unite the subsets into a complete set of reducts. Among the SBMs of a BM, the most complex one is the first SBM with a space complexity not greater than the square root of that of the original BM. The proposed algorithm converts such a SBM with \(n\) attributes into the subset of reducts with the worst case space complexity of \(\left( _{n/2}^n \right) /2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Komorowski J, Pawlak Z, Polkowski L, Skowron A (1999) Rough-fuzzy hybridization: rough sets: a tutorial. A new trend in decision making. Springer, Berlin

    Google Scholar 

  2. Wang XY, Yang J, Teng XL, Xia WJ, Jensen R (2007) Feature selection based on rough sets and particle swarm optimization. Pattern Recogn Lett 28(4):459–471

    Article  Google Scholar 

  3. Shang WQ, Huang HK, Zhu HB, Lin YM, Qu YL, Wang ZH (2007) A novel feature selection algorithm for text categorization. Expert Syst Appl 33(1):1–5

    Article  Google Scholar 

  4. Matsumoto Y, Watada J (2009) Knowledge acquisition from time series data through rough sets analysis. Int J Innov Comput Inf Control 5(12B):4885–4897

    Google Scholar 

  5. Javed K, Babri HA, Saeed M (2012) Feature selection based on class-dependent densities for high-dimensional binary data. IEEE Trans Knowl Data Eng 24(3):465–477

    Article  Google Scholar 

  6. Yang SH, Hu BG (2012) Discriminative feature selection by nonparametric Bayes error minimization. IEEE Trans Knowl Data Eng 24(8):1422–1434

    Article  MathSciNet  Google Scholar 

  7. Zhao Z, Wang L, Liu H, Ye JP (2013) On similarity preserving feature selection. IEEE Trans Knowl Data Eng 25(3):619–632

    Article  Google Scholar 

  8. Skowron A, Rauszer C (1992) The discernibility matrices and functions in information systems. ICS PAS Report 1/91, Technical University of Warsaw, pp 1–44

  9. Maji P, Pal SK (2010) Feature selection using f-information measures in fuzzy approximation spaces. IEEE Trans Knowl Data Eng 22(6):854–867

    Article  Google Scholar 

  10. Jensen R, Shen Q (2004) Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Trans Knowl Data Eng 16(12):1457–1471

    Article  Google Scholar 

  11. Thangavel K, Pethalakshmi A (2009) Dimensionality reduction based on rough set theory: a review. Appl Soft Comput 9(1):1–12

    Article  Google Scholar 

  12. Gao BJ, Ester M, Xiong H, Cai JY, Schulte O (2013) The minimum consistent subset cover problem: a minimization view of data mining. IEEE Trans Knowl Data Eng 25(3):690–703

    Article  Google Scholar 

  13. Hall MA, Holmes G (2003) Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans Knowl Data Eng 15(6):1437–1447

    Article  Google Scholar 

  14. Liu H, Yu L (2005) Toward integrating feature selection algorithms for classification and clustering. IEEE Trans Knowl Data Eng 17(4):491–502

    Article  Google Scholar 

  15. Qu GZ, Hariri S, Yousif M (2005) A new dependency and correlation analysis for features. IEEE Trans Knowl Data Eng 17(9):1199–1207

    Article  Google Scholar 

  16. Chen WC, Tseng SS, Hong TP (2008) An efficient bit-based feature selection method. Expert Syst Appl 34(4):2858–2869

    Article  Google Scholar 

  17. Wang F, Liang JY, Dang CY (2013) Attribute reduction for dynamic data sets. Appl Soft Comput 13(1):676–689

    Article  Google Scholar 

  18. Yan J, Zhang BY, Liu N, Yan SC, Cheng QS, Fan WG, Yang Q, Xi WS, Chen Z (2006) Effective and efficient dimensionality reduction for large-scale and streaming data preprocessing. IEEE Trans Knowl Data Eng 18(3):320–333

    Article  Google Scholar 

  19. Skowron A (1990) The rough sets theory and evidence theory. Fundam Inf 13:245–262

    MathSciNet  MATH  Google Scholar 

  20. Øhrn A, Komorowski J, Skowron A, Synak P (1998) The design and implementation of a knowledge discovery toolkit based on rough sets: the ROSETTA system. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery. Physica Verlag, Heidelberg, pp 376–399

  21. Jensen R, Shen Q (2007) Rough set based attribute selection: a review. http://cadair.aber.ac.uk/dspace/bitstream/handle/2160/490/JensenShen.pdf?sequence=3. Accessed 12 Dec 2013

  22. Wang J, Wang J (2001) Reduction algorithms based on discernibility matrix: the ordered attributes method. J Comput Sci Technol 16(6):489–504

    Article  MATH  Google Scholar 

  23. Mafarja M, Abdullah S (2013) Record-to-record travel algorithm for attribute reduction in rough set theory. J Theor Appl Inf Technol 49(2):507–513

    Google Scholar 

  24. Kahramanli S, Hacibeyoglu M, Arslan A (2011) Attribute reduction by partitioning the minimized discernibility function. Int J Innov Comput Inf Control 7(5A):2167–2186

    Google Scholar 

  25. Procaccia AD, Rosenschein JS (2006) Exact VC-dimension of Monotone formulas. Neural Inf Process Lett Rev 10(7):165–168

    Google Scholar 

  26. Hacibeyoglu M, Basciftci F, Kahramanli S (2011) A logic method for efficient reduction of the space complexity of the attribute reduction problem. Turk J Electr Eng Comput Sci 19(4):643–656

    Google Scholar 

  27. Kahramanli S, Hacibeyoglu M, Arslan A (2011) A Boolean function approach to feature selection in consistent decision information systems. Expert Syst Appl 38(7):8229–8239

    Article  Google Scholar 

  28. Nelson JR (1955) Simplest normal truth functions. J Symb Log 20(2):105–108

    Article  MATH  Google Scholar 

  29. Malik AA, Brayton RK, Newton AR, Sangiovannivincentelli A (1991) Reduced offsets for minimization of binary-valued functions. IEEE Trans Comput Aided Des Integr Circuits Syst 10(4):413–426

    Article  Google Scholar 

  30. Miltersen PB, Radhakrishnan J, Wegener I (2005) On converting CNF to DNF. Theor Comput Sci 347(1–2):325–335

    Article  MathSciNet  MATH  Google Scholar 

  31. Vorwerk K, Paulley GN (2002) On implicate discovery and query optimization. In: Proceedings of international database engineering and applications symposium, 2002

  32. Slagle JR, Chang CL, Lee RCT (1970) New algorithm for generating prime implicants. IEEE Trans Comput C–19(3):304–310

    Article  MathSciNet  Google Scholar 

  33. Thelen B (1981) Investigations of algorithms for computer-aided logic design of digital circuits. University of Karlsruhe, Karlsruhe

    Google Scholar 

  34. Bieganowski J, Karatkevich A (2005) Heuristics for Thelen’s prime implicant method. Scheda Inf 14: 125–135

    Google Scholar 

  35. Karatkevich A, Bieganowski J (2004) Detection of deadlocks and traps in petri nets by means of Thelen’s prime implicant method. Int J Appl Math Comput Sci 14(1):113–121

    MathSciNet  MATH  Google Scholar 

  36. Socher R (1991) Optimizing the clausal normal form transformation. J Autom Reason 7:325–336

    Article  MathSciNet  MATH  Google Scholar 

  37. Shiny AK, Pujari AK (1998) Computation of prime implicants using matrix and paths. J Logic Comput 8(2):135–145

    Article  MathSciNet  MATH  Google Scholar 

  38. Lee TT, Lo TY, Wang JF (2006) An information-lossless decomposition theory of relational information systems. IEEE Trans Inf Theory 52(5):1890–1903

    Article  MathSciNet  MATH  Google Scholar 

  39. Sasao T, Butler JT (2001) Worst and best irredundant sum-of-products expressions. IEEE Trans Comput 50(9):935–948

    Article  MathSciNet  Google Scholar 

  40. Machine Learning Repository. http://archive.ics.uci.edu/ml. Accessed 13 Dec 2013

  41. Selvakuberan K, Indradevi M, Rajaman R (2008) Combined feature selection and classification—a novel approach for the categorization of web pages. J Inf Comput Sci 3(2):83–89

    Google Scholar 

  42. Hacibeyoglu M, Arslan A, Kahramanli S (2013) A hybrid method for fast finding the reduct with the best classification accuracy. Adv Electr Comput Eng 13(4):57–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Hacibeyoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacibeyoglu, M., Salman, M.S., Selek, M. et al. The logic transformations for reducing the complexity of the discernibility function-based attribute reduction problem. Knowl Inf Syst 46, 599–628 (2016). https://doi.org/10.1007/s10115-015-0824-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-015-0824-9

Keywords

Navigation