
Knowledge and Information Systems manuscript No.
(will be inserted by the editor)

The MASSIF Platform: a Modular & Semantic Platform
for the Development of Flexible IoT Services

Pieter Bonte, Femke Ongenae,

Femke De Backere, Jeroen Schaballie,

Dörthe Arndt, Stijn Verstichel, Erik Mannens,

Rik Van de Walle and Filip De Turck

Received: Nov 27, 2015 / Revised: May 03, 2016 / Accepted: May 14, 2016

Abstract In the Internet of Things (IoT), data-producing entities sense their en-
vironment and transmit these observations to a data-processing platform for fur-
ther analysis. Applications can have a notion of context-awareness by combining
this sensed data, or by processing the combined data. The processes of combin-
ing data can consist both of merging the dynamic sensed data, as well as fusing
the sensed data with background and historical data. Semantics can aid in this
task, as they have proven their use in data integration, knowledge exchange and
reasoning. Semantic services performing reasoning on the integrated sensed data,
combined with background knowledge, such as profile data, allow extracting useful
information and support intelligent decision making. However, advanced reasoning
on the combination of this sensed data and background knowledge is still hard to
achieve. Furthermore, the collaboration between semantic services allows to reach
complex decisions. The dynamic composition of such collaborative workflows that
can adapt to the current context, has not received much attention yet.

In this paper, we present MASSIF, a data-driven platform for the semantic
annotation of and reasoning on IoT data. It allows the integration of multiple
modular reasoning services, that can collaborate in a flexible manner to facilitate
complex decision making processes. Data-driven workflows are enabled by letting
services specify the data they would like to consume. After thorough processing,
these services can decide to share their decisions with other consumers. By defining
the data these services would like to consume, they can operate on a subset of data,
improving reasoning efficiency. Furthermore, each of these services can integrate
the consumed data with background knowledge in its own context model, for rapid
intelligent decision making. To show the strengths of the platform, two use cases
are detailed and thoroughly evaluated.

Keywords IoT · Data-driven platform · Semantic Web · Reasoning · Ontologies ·
SOA

Ghent University - iMinds, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
E-mail: Pieter.Bonte@intec.ugent.be



2 Pieter Bonte et al.

1 Introduction

1.1 Background

In the Internet of Things (IoT) paradigm, numerous things are connected to the In-
ternet [6]. Through interactions with these connected things, specific goals can be
reached that support our daily tasks. The data these things transmit, originates
from numerous heterogeneous sources, each sensing a part of the environment.
Combining data from different sources facilitates applications to support context
awareness [8]. This enables applications to understand the given situation. For
example, to allow elderly people to stay at their own home as long as possible,
fall detection systems combine multiple sensors with background knowledge, such
as the profile of the elderly. A high fall detection precision can be achieved by
combining the profile, habits and whereabouts of the elderly with multiple sen-
sors, such as motion and pressure sensors. The IoT aims at creating intelligent
systems that can support people as much as possible during their daily activities.
To achieve this awareness, understanding the raw sensor data is necessary. Collec-
tion, modeling, reasoning, and distribution of context in relation to sensor data
plays a critical role in order to tackle this challenge [45].

Context-aware systems can acquire, interpret and use context information to
adapt their behavior to the current context [12]. They have played an important
role in tackling this challenge in previous paradigms. Their proven previous suc-
cess makes them a solution that is ought to be successful in the IoT paradigm as
well [45]. According to Perera, et al. [45], one of the important design principles for
context-aware systems is scalability and extensibility. Gartner1 expects 20 billion
connected things to be in use worldwide by 2020. Thus, it should be straight-
forward to add new sensors and devices to a context-aware system. Additional
sensors and devices produce new data that might need to be processed differently.
Consequently, it should be possible to easily add extra processing services to ex-
tract high-level knowledge. Following this thought, the number of services and
applications handling the produced IoT-data will increase rapidly. Consequently,
context-aware platforms for the IoT should be easily extensible.

According to Strang, et al. [52], semantics are the preferred mechanism of man-
aging and modeling context. Semantics can aid in the integration of the generated
heterogeneous IoT data by enabling interoperability between different sources and
providing a uniform model [52,10]. For example, the profile information of the el-
derly, the floor plan of the house and the sensor readings have different sources and
data formats. Combining them within the semantic model enables interoperability.
A concise introduction to semantics can be found in Section 1.2.3. However, anal-
ysis and mapping of data to the semantic model has to be handled for each source
individually. Combining the domain information, such as the sensor readings, with
profile information, allows to make personalized decisions.

Semantic reasoning allows to compute logical consequences defined in the se-
mantic model. For example, the model could define an alarming fall as a sensor
reading from a fall detection sensor with an accuracy above a certain threshold

1 http://www.gartner.com/



The MASSIF Plaform 3

(e.g., 78%) resulting from a sensor in the home of a resident with a profile that
states that the patient is in a wheelchair. When such a sensor reading is detected
by the reasoner, it will know it has detected a fall and someone should be called to
assist the patient, even when it is not explicitly stated in the sensor data. Utilizing
semantic reasoning enables transforming the integrated low-level data into high-
level knowledge, allowing accurate and intelligent decisions. However, expressive
logics such as Description Logic (DL)-Reasoning have EXPTIME complexity [30],
resulting in slow reasoning times with growing datasets [26,3]. This is inconsistent
with the vision that events in the IoT should be processed in a timely manner [8].

1.2 Related Work

The following section describes existing context-aware and IoT frameworks. On-
tologies are discussed and considered to be the most used semantic model in current
practice. The discussion of the context-aware and IoT frameworks will focus on
four important aspects:

1. The capability to semantically annotate raw data. To be able to extract useful
knowledge from the IoT-data, the data needs to be semantically annotated
first [55].

2. Inference techniques. The extraction of knowledge is an important instrument
in the IoT [8]. More advanced techniques allow to extract more complex knowl-
edge.

3. Context model. Platforms can utilize a central context model that contains all
context information in one central knowledge base for easy access, a duplicated
context model for resilience or a distributed context model for efficiency.

4. Service Collaboration. Service composition provides functionality to build a
specific (IoT) application, which is composed of various independent services [45].
By allowing services to collaborate, more complex tasks can be tackled.

1.2.1 Context-Awareness

A system is context-aware if it uses context to provide relevant information and/or
services to the user, where relevancy depends on the user’s task [1,7]. Context-
awareness frameworks typically support acquisition, representation, delivery and
reaction [19].
Various methods have been proposed to model context information. The six most
popular are: key-value modeling, markup scheme modeling, graphical modeling,
object-based modeling, logic-based modeling and ontology-based modeling. Ac-
cording to many surveys in context-aware computing, ontologies are the preferred
mechanism of managing and modeling context [45,52].
Over 30 distinctive context-aware systems have been developed, each providing
a different kind of system. An exhaustive analysis of these systems can be found
in Perera, et al. [45] and Li, et al. [34]. The most recent and related semantic
context-aware platforms are elaborated upon in the following paragraphs.

SeCoMan [29] is a context-aware platform, designed to provide privacy-preserving
solutions in the design of context-aware services. These services or applications are



4 Pieter Bonte et al.

in charge of managing their own context for security issues. The privacy handling
itself is implemented using a rule-based approach. However, the platform is aware
of locations only, other sensor data cannot be semantically annotated and incor-
porated.

CoCaMAAL [22] is a cloud-oriented context-aware middleware solution for
Ambient Assisted Living (AAL). It is able to annotate and abstract raw data
from the AAL systems, based on pre-designed ontologies. Service providers enable
specific applications based on the context-aware middleware. They can subscribe to
the context-aware middleware by providing service rules. However, these service
providers do not collaborate. The context model utilized in the context-aware
middleware is duplicated in the cloud, however, it is not possible to isolate the
context model for the various services providers.

CASF [32] is a framework for context-aware service discovery and integration.
It consist of 3 layers: (i) a physical sensor layer which captures the raw sensor data,
(ii) a public context layer that processes the sensor data and administers various
context providers, and (iii) a context service layer, which consumes context infor-
mation from one or more context providers. The context services can consume the
provided context, but are not capable of sharing conclusions. The platform uses
Web Services for automatic discovery and integration of context information.

Although these frameworks look promising, they do not provide advanced rea-
soning capabilities, such as description logics, and lack the capability to coordinate
high-level workflows.

1.2.2 IoT Frameworks

IoT frameworks serve as a middleware solution to provide connectivity for sensors
and actuators to the Internet. Numerous IoT frameworks exist, most of them focus
on the integration of the devices and sensors, less attention is given to intelligent
data processing of IoT data [8]. The following paragraphs discuss recent attempts
to process IoT data, more specifically through the use of semantics.

Patkos et al. propose an ambient intelligence framework that combines rule-
based reasoning with causality-based reasoning, to reason about actions and causal-
ities [44]. The proposed framework does not provide capabilities to annotate raw
IoT data.

The LinkSmart platform [33] was designed to support interoperability and
integration of various devices, sensors and services. It provides an abstraction of
the devices and sensors as regular programming objects towards the application
layer. It allows to compose workflows through the use of business rules to optimize
the service composition.

Gray et al., propose a system to annotate and integrate heterogeneous stream-
ing data with stored data, through the use of ontologies [23]. Their approach
focuses on the discovery and integration of data sources, both static as streaming
data. Reasoning and service collaboration techniques are not presented.

Sense2Web [17] is a multilayer platform, allowing to annotate and integrate
sensor data in the form of Linked Data and makes it available to other Web appli-
cations via SPARQL endpoints. Its data source layer is modeled using expressive
ontologies, allowing high-level data retrieval. However, service collaboration and



The MASSIF Plaform 5

advance reasoning capabilities are not provided for the service and application
layer.

XGSN [13] is an end-to-end, semantic-enabled IoT platform that allows to
semantically annotate sensors and processes the produced sensor stream using
the Linked Sensor Middleware (LSM). The stream can be archived or processed
using stream processors. External application can query the context through Web
Services. However, these applications cannot share conclusions back to the context
layer.

Ali et al. propose an IoT-enabled communication system that allows the an-
notation of sensory data through the use of XGSN and the continuous analysis
of data streams through the use of a stream query processing module for the de-
tections of events [4]. These events can then be further processed in the Stream
Reasoning component that can infer implicit semantic statements. Applications
can subscribe to events generated in the centralized stream processing and reason-
ing layer. However, they cannot collaborate to achieve complex workflows.

OpenIoT [51] is an open source IoT platform enabling the semantic interop-
erability of IoT services in the cloud. It allows the integration and annotation of
virtually any sensor. LSM is utilizes and acts as a cloud database which enables the
storages of the annotated data streams. Services can access the the annotated data
through the use of SPARQL queries. However, service collaboration and advanced
reasoning capabilities are lacking.

SOFIA2 [31] is an ontology-based Big Data IoT middleware, allowing interop-
erability and semantic annotation of multiple heterogeneous devices. It facilitates
Complex Event Processing (CEP) to orchestrate the context-data between context
consumers. However, besides context subscription based on CEP, there is no real
semantic reasoning possible.

These frameworks can annotate data semantically and draw conclusions in an
efficient reactive manner. Efficient processing of data is often provided, however
advanced reasoning capabilities are still missing. Furthermore, these platforms
fail to mutually collaborate in a high-level manner. An overview of the discussed
ontology-based context-aware and IoT platforms is summarized in Table 1.

1.2.3 Ontology

Gruber [24] defined an ontology as “an explicit specification of a conceptualiza-
tion”. An ontology formally describes concepts, properties and their relations,
within a certain domain, that can easily be reused [46,49] in different settings.
This allows to model knowledge and make data machine-readable. The Web On-
tology Language (OWL) [9] is the most popular language to describe ontologies.
Ontologies form an excellent model to integrate data, exchange knowledge and to
reason upon that enhanced information. The ontology’s Terminology Box (TBox)
describes the concepts and their relations, while the Assertion Box (ABox) con-
tains the data instances with respect to the TBox. The concepts are also called
classes and the relations between classes are called object properties. Data proper-
ties describe the relation of a concept to a specific data value. The ABox consists of
entities of the defined classes (the individuals), their relations and their data prop-
erties (the literals). An OWL ontology is described as a collection of axioms, e.g.,
the class axioms describe the concepts in the ontology in a formal manner. OWL



6 Pieter Bonte et al.

Table 1: Comparison of existing ontology-based context-aware and IoT platforms.

Year Semantic Inference Context Service
Annotation Model Collaboration

Patkos et al. [44] 2010 / Rules & Central /
Causality

LinkSmart 2011 X Rules Central X
Gray, et al. [23] 2011 X / Central /
Sense2Web 2012 X / Central /
SeCoMan 2013 locations Rules Distributed /
CoCaMAAL 2014 X Rules Duplicated /
CASF 2013 X / Distributed /
SOFIA2 2014 X / Central X
XGSN 2014 X Basic Stream Central /

Processing
Ali et al. [4] 2015 X Stream Processing & Central /

Stream Reasoning
OpenIoT 2015 X / Central /
MASSIF 2016 X OWL DL Distributed X

contains multiple sublanguages, each of which varies between expressivity and
complexity. The sublanguages are listed below with increasing expressivity [35]:

1. OWL-Lite: supports classification and simple restriction functions.
2. OWL-DL: the largest subset without the loss of computational completeness.
3. OWL-Full: maximal expressivity and syntactical freedom. However, the rea-

soning process might not be computable.

The popularity of OWL has led to the creation of three OWL 2 profiles [37],
each offering a specific subset of the overall expressivity to obtain advantages in
specific applications. Each profile is a subset of the OWL DL sublanguage.

1. OWL 2 Existential quantification Language (EL) is useful in applications uti-
lizing an ontology that contains a large number of properties and/or classes.

2. OWL 2 Query Language (QL) is created for applications where query answering
is the main task.

3. OWL 2 Rule Language (RL) provides scalable reasoning without sacrificing
too much expressiveness.

1.3 Objectives

There are still many challenges left to tackle in the IoT-paradigm. Over the past
years, efforts in IoT have mainly focused on developing infrastructures to collect
and communicate IoT data. Less attention was given to intelligent data processing
of this data [8]. The aim of this research is to propose a platform for reactive and
real-time data processing, that complies with the following objectives:

– Semantic Annotation: To be able to extract useful knowledge from the IoT-
data, the data needs to be semantically annotated first [55]. Since it cannot
be expected that all sensors and devices generate semantically annotated data
natively, it should be possible to enrich raw (sensor) data according to the
semantic model.



The MASSIF Plaform 7

– Knowledge Extraction: The extraction of knowledge is an important instru-
ment in the IoT [8]. It allows to analyze the data, infer new data and to abstract
the data for easy data consumption [2]. Utilizing advanced reasoning capabil-
ities, such as description logics, allows the extraction of intelligent high-level
conclusions and the execution of intelligent decisions.

– Extensibility: To be able to cope with the ever growing amount and types
of connected sensors and devices, IoT platforms should be extensible [45]. This
allows adding new functionality without altering the existing components. Thus,
a plug-in architecture is mandatory.

– Performance: Due to the fact that the produced data in the IoT is only tem-
porary valid, a timely processing is required [8].

– Scalability: Cisco2 expects there will be more than 50 billion devices connected
to the Internet by 2050. The processing of a growing number of connected devices
requires a scalable platform.

– High-level Workflows: IoT data consumers are often interested in the high-
level concepts, such as concepts higher in the class hierarchy of ontologies or
implicit concepts requiring reasoning to infer [8]. Service composition provides
functionality to build a specific (IoT) application, which is composed of various
independent services. The composition of these services, through the use of
workflows, should be possible base on these high-level concepts [45].

– Real-time Processing: Many solutions provide IoT analysis tools [36]. How-
ever, to detect and immediately react to events, real-time processing of the IoT
data is necessary [8].

1.4 Paper Organization

The remainder of this paper is structured as follows. Section 2 highlights our con-
tribution and provides an overview of the proposed platform. Section 3 elaborates
on the implementation-specific details of the platform. Two use cases are explained
in Section 4 to illustrate the capabilities of the platform to derive useful informa-
tion in a timely manner. These use cases handle data originating from a home
care and media setting. The limitations of the platform are discussed in Section 5.
Section 6 highlights the conclusions and introduces tracks for the future work.

2 The MASSIF Platform

This section highlights the novelty of the presented work and provides an archi-
tectural overview of the platform.

2.1 Our Contribution

In this paper, we present the MASSIF platform (ModulAr, Service, Semantic &
Flexible platform). It is designed for rapid enrichment and reasoning on IoT data.
It uses ontologies to represent context information and different kinds of reason-
ing can be enabled to derive high-level knowledge. To be able to cope with any

2 http://www.cisco.com/



8 Pieter Bonte et al.

kind of input data, the platform allows to semantically annotate raw data. Once
the data is annotated, it can be combined with static context data. The use of
semantic reasoning allows data consumers to extract useful knowledge, make intelli-
gent decisions and take appropriate actions. Furthermore, the data consumers that
extract this knowledge can become data producers and share their findings with
other data consumers. This allows the creation of workflows. Since abstractions
and high-level concepts are mandatory to create complex workflows, reasoning is
performed to coordinate the data flow. To allow dynamic and context dependent
workflows, we propose a data-driven workflow composition, where data consumers
define the data they would like to receive, based on high-level concepts. When data
is processed by the platform, it will check which data consumers are interested in
the particular type of data. These types of workflows allow loosely-coupled mod-
ular services, which enable extensibility and scalability. Furthermore, a distributed
context model is utilized. Each of the data consumers manages its own context.
The distributed context model, combined with the data-driven workflows allows
each data consumer to operate on a subset of data. Minimizing the dataset enables
more effective reasoning, even when utilizing logics such as description logics.

MASSIF is a reactive data-driven platform, in the sense that it reacts to the
received data and handles accordingly. This eliminates the need for active polling
the various MASSIF components for updates or actions.

2.2 The Platform Architecture

The platform consists of five types of components, whereof two of them can be
extended to provide specific functionality in each use case. These are called API-
components and can be distinguished with the dotted lines in Figure 1.

The API-components consist of the Context Adapters, which can semantically
annotate the data and Services, which process the semantic data to retrieve high-
level knowledge.

The various components that make up the MASSIF Platform are discussed be-
low. The explanation will start with the Semantic Communication Bus (SCB)[21],
since it regulates the data flow within the platform.

1. The SCB provides a publish-subscribe mechanism based on high-level ontol-
ogy concepts. The services can subscribe by defining what kind of data they
would like to consume. These definitions are called semantic filter rules and are
in fact OWL class expressions. The services can be both consumers and pro-
ducers. They can decide to share their conclusions by publishing their findings
on the SCB. The SCB has its own context model and utilizes reasoning on the
subscribed filter rules and the published data to determine which services sub-
scribed to the published data. Note that through the use of reasoning, services
can define their input data in an abstract and high-level manner.

2. The Gateway serves as the primary communication interface of the platform. It
allows both input and output with external devices.

3. The Matching Service inspects the raw data that have been sent from an external
source to the Gateway. It selects a Context Adapter that is able to annotate the
low-level data according to the semantic model.

4. A Context Adapter receives low-level data from the Matching Service and se-
mantically annotates it. Multiple Context Adapters can be active to annotate



The MASSIF Plaform 9

Semantic Annotation Layer

Service Layer

Flow Decision Layer

Input Layer

Semantic Communication bus

Gateway

Matching Service

Service A Service B Service C

JSON, tagged

JSON, tagged

Event OWL individuals

JSON, tagged

Legend:
Implementing API

General

Service D

Event OWL individuals

Context 

Adapter B

Context 

Adapter A

Context 

Adapter C

Event OWL individuals

Fig. 1: Conceptual Architecture of the MASSIF platform.

numerous kinds of raw data. Once the data is converted to OWL individuals, it
is pushed on the SCB. The platform also allows Virtual Context Adapters. These
context adapters do not receive data from the Matching Service, but annotate
data they capture from existing sources, such as Twitter streams.

5. A Service subscribes to the SCB with one or more filter rules. These filter rules
describe the data that the Service would like to consume. Each Service performs
a distinct reasoning task or algorithm and can share its inferred knowledge with
other Services, over the SCB.

Note that the SCB and the Services each contain their own ontology model
and can preload it with background knowledge, such as profile data.

3 Implementation Details

The following section explains the introduced components from Section 2 in greater
detail. First, a running example is presented that will be used to clarify the further
details of the components in the platform. Second, additional implementation de-
tails about the used technology are given in Section 3.2. Third, more clarification
is provided in Section 3.3 on how the ontologies are internally represented. Finally,
each component is described in great detail in Section 3.4, based on the provided
information from the first three subsections.



10 Pieter Bonte et al.

SSN

ssn:Sensor

ssn:SensorOutput

ssn:SystemPerson

Subclass Of

isLinkedTo
Role

hasRole

RecoveryMethod

hasRecoveryMethod

MotionOutput

Subclass Of
MotionSensor

observation 

Result

observedBy

hasContext

Subclass Of

ActivityBased

Recovery

RestBased

Recovery

Subclass Of

PatientCareGiver

Subclass Of

ssn:Observation

Event

Fig. 2: Overview of used extension of the SSN ontology.

3.1 Running Example

To further explain the various components, a running example is introduced to
provide practical insights. In the example, a motion sensor is integrated in the
home of a patient. The patient should be active for a certain amount of time,
to fully recover. The exact upper and lower bound of the allowed active time
is patient- and situation-dependent and should not be exceeded. The sensor will
capture the activity of the patient and send it to the platform, that will compare
it against the background knowledge, which describes the profile of the patient.
If the platform detects that not enough/too much activity has been reached, an
alarm is triggered.

To model the different concepts and relations for the running example, the
Semantic Sensor Network (SSN) [15] ontology is utilized. Figure 2 shows the TBox
of the extended SSN ontology, describing the designed concepts and their relations.
The MotionSensor, MotionOutput and Observation concept are used to model the
motion sensor readings.

3.2 OSGi

The platform has been developed utilizing OSGi [41], which is an extra layer on top
of the Java Virtual Machine, enabling modularity. It allows components to be dy-
namically added, even at run time. This enables our platform to be extended with
additional Context Adapters or Services, even when the platform is fully operative.
Additionally to the enabled extensibility, OSGi allows straightforward scalability.
All components are OSGi Services, which can be distributed utilizing Distributed

OSGi [41].

3.3 Ontology Representation

The ontologies are internally represented using the OWL API [27]. Data is shared,
over the SCB, as a set of OWLAxioms, describing the data semantically. The
OWL API provides an OWLReasoner-interface, which is implemented by numerous



The MASSIF Plaform 11

popular reasoners [43] such as Pellet [50], Hermit [48], Fact++ [53], JFact [42],
Chainsaw [54] and RacerPro [25]. This allows services to choose which reasoner to
utilize. Various reasoners provide different functionality, complexity and efficiency.

3.4 MASSIF Implementation

Since it cannot be expected that all data-producing entities transmit their sensory
observations semantically annotated, the platform can annotate raw sensor data
itself. It is assumed that each sensor is capable of transmitting its raw data in
JavaScript Object Notation (JSON) [16], annotated with a certain tag, which pro-
vides some extra information about the origin of the data. The tag itself is added
by the sensor gateway. The modular structure of the platform allows to extend the
platform in order to accept different input formats. If sensors are able to transmit
semantic data, the semantic annotation step can be skipped.

3.4.1 Gateway

Low-level data, in JSON format, enters the platforms through the Gateway, as
depicted at the bottom of Figure 1. Since the platform is fully data-driven, devices
can push their data to the platform. The Gateway serves as an entry point and
forwards the data to the Matching Service.

3.4.2 Matching Service

The Matching Service analyses the data and decides which Context Adapter can
semantically annotate the received data. The decision is made based on the tag

in the arriving JSON message. The tag indicates which type of device sent the
low-level data. An example of this low-level data can be seen in Listing 1. The
data describes a motion sensor reading with a precision of 85%.

Listing 1: Raw data fragment in JSON format.

{
"prefixes": {

"ssn": "http :// purl.oclc.org/NET/ssnx/ssn"
},
"userID": "00001",
"data": {

"n": "motion_sensor",
"v": "0.85f",
"tag" : "MotionSensor"

}
}

3.4.3 Context Adapters

When a Context Adapter is added to the platform, it provides the types of sensors,
i.e., tags of low-level data, it is able to annotate semantically. Each Context Adapter

can annotate a specific kind of received data to the semantic model. The result
of the annotation phase is semantic annotated data, i.e., ontological individuals.
Since each Context Adapter indicates the type of data it is able to annotate itself,



12 Pieter Bonte et al.

additional adapters can easily be added to cope with new types of raw data, such
as additional sensors. The Context Adapters enrich the data to a set of OWLAx-

ioms, which are pushed on the SCB. Each Context Adapter provides a mapping,
describing how the raw data translates to the semantic data. Listing 2 shows an
extract of the created OWLAxioms in the annotation phase for the fragment in
Listing 1.

Listing 2: Enriched data as OWLAxioms

ClassAssertion(pre:Event pre:event_1),
ClassAssertion(ssn:Observation ssn:observation_1),
ClassAssertion(pre:MotionSensor pre:motionSensor_1),
ClassAssertion(pre:MotionOutput pre:motionOutput_1),
ObjectPropertyAssertion(pre:hasContext pre:event_1 pre:observation_1),
ObjectPropertyAssertion(ssn:observedBy pre:observation_1 pre:motionSensor_1),
ObjectPropertyAssertion(ssn:observation_result pre:observation_1 pre:

motionOutput_1),
DataPropertyAssertion(ssn:hasValue pre:motionOutput_1 "0.85f"^^xsd:float)

The fragment illustrates various assertions: ClassAssertions, ObjectPropertyAsser-
tions and a DataPropertyAssertion. For example, the first ClassAssertion states
that the event 1 individual is a member of the class Event. It indicates that an
Event has been created that is linked to an Observation. The Observation states
the kind of sensor that made the observation and the output of the observation,
combined with the actual measured value.

Event MotionSensor

hasContext observedBy

MotionOutput
observation 

Result
hasValue

0.85f

Observation

Fig. 3: Conceptual representation of the events in the platform.

All semantic data passing through the platform are Events. Figure 3 shows an
example of how the Event is linked to the data. From now on, all data flowing
through the platform will be called events. Each event has a starting point of the
type Event in the graph-like data structure. With the relation hasContext it is
linked to the actual data. Note that the Event concept and the hasContext relation
are pictured in grey, since they are required by the platform. All other types and
relations, such as the Observation and the MotionSensor are use case specific and
are not obliged by the platform.

Virtual Context Adapters are a special type of Context Adapters that do not
receive data from the Matching Service, and thus do not register a tag. These
adapters annotate data they capture from external sources, such as Facebook and
Twitter streams.

3.4.4 Semantic Communication Bus

The SCB supports communication and collaboration between the different com-
ponents. The different components publish their data on the SCB in the form of



The MASSIF Plaform 13

OWLAxioms. Each component can subscribe to the SCB by passing a filter rule
in the form of an OWL class expression. The class describes the kind of data the
component wants to consume, on a semantic level. Upon subscription, the regis-
tered classes are added to the ontology model of the SCB. Note that the SCB loads
its ontology, describing its domain, at startup. When data gets published on the
SCB, the published data is temporarily added to the ontology model. The SCB’s
ontology model now contains the loaded concepts from startup, the registered filter
rules as OWL class expressions and the temporary data as OWLAxioms. Through
the use of semantic reasoning on the ontology, the type of the published event is
retrieved, which matches the subscribed filter rules of those services that would
like to consume the data. This way, high-level data coordination is achieved. When
the data is forwarded to the selected services, it is removed from the ontology.

In axiom (1), an example filter rule is depicted. It shows that the MotionFilter

is an Event with a relation hasContext to an Observation and that the Observation

should have a relation observedBy with a MotionSensor.

MotionFilter ≡ Event

∧ ∃hasContext.(Observation ∧ (∃observedBy.MotionSensor)) (1)

A direct match can be seen between the Event in Figure 3 and the filter. When
the reasoner in the SCB is asked for the type of the event, it will also return the
MotionFilter.

Assume that the following classes are also present in the ontology:

MotionSensor v Sensor (2)

MotionObservation v Observation ∧ ∃observation result.MotionOutput (3)

The class definition in (2) defines the MotionSensor as a subclass of Sensor. To
subscribe to all Sensors, including the MotionSensor, one can easily subscribe the
filter rule in (4).

MotionFilter2 ≡ Event

∧ ∃hasContext.(Observation ∧ (∃observedBy.Sensor)) (4)

To show the added value of the reasoning in the SCB, an additional filter is
added in (5).

MotionFilter3 ≡ Event ∧ ∃hasContext.MotionObservation (5)

This rule makes use of the axiom in (3). Even though the MotionObservation is
not explicitly defined in the received data, the reasoner knows what a MotionOb-

servation is and will return the filter rule as the type of the event. This enables
collaboration between services based on high-level concepts.

The SCB enables intelligent collaboration and distribution of retrieved knowl-
edge between Services.



14 Pieter Bonte et al.

3.4.5 Services

Each Service subscribes to the SCB through the use of one or more filter rules.
After processing the consumed data, inferred knowledge can be published to the
SCB, to notify other Services about its findings. Each Service contains its own
ontology and reasoner. The use of filter rules limits the data each Service receives,
resulting in more efficient reasoning, since each Service only needs to incorporate
a subset of data. Note that reasoning might become slow when the size of the
dataset increases.

Lets assume a new Service, the MotionService, which loads profile information in
its ontology at startup and subscribes to all motion data with axiom (5). Compared
to the event data, big datasets are typically loaded directly into the ontology model
of the Services, through the use of tools such as Ontop3 and D2R4. The loading
of such static background data allows to combine the low-level event data with
background knowledge. This combination facilitates the extraction of high-level
knowledge. At run time, the sensor data from the motion sensor is combined with
the profile data to check the activity of recovering patients. Note that the time
period a patient needs to be active is person-dependent. When aberrant activity
has been detected, a Task is generated indicating that someone should check on
that person.

A second Service captures all Tasks and tries to assign the most suited person
to perform these Tasks. The Service could subscribe to all tasks with the following
filter rule:

TaskF ilter ≡ Event ∧ ∃hasContext.Task (6)

Additional Services can easily be added to provide extra functionality. Let us
assume that the lifetime of certain sensors is limited and when a sensor fails, it
starts to produce random values. A Service can be added that captures all sensor
values and analyses them to see if they start to produce aberrant values. It can
then choose to share this knowledge with the other Services over the SCB.

When ontologies have been constructed with modularity in mind, each Service

can load only the necessary parts of the whole ontology, again improving perfor-
mance. A modular ontology is an ontology that consists of multiple stand-alone
ontology modules which improves reasoning efficiency [20]. When a part of the
ontology holds a specific profile [38] (e.g., OWL 2 EL, OWL 2 QL, OWL 2 RL) in-
stead of OWL 2 DL, different reasoners can be utilized in each service to optimize
performance. Even when no specific profile can be used or no modularity can be
detected, different reasoners or techniques can still be used on the whole ontology
in each Service to optimize the performance of the task at hand.

Each Service can share its inferred knowledge through the SCB, which might
be of interest to other Services which can also process the data and share its
knowledge. Combining and passing the results of each Service allows the creation
of complex reasoning chains. Since each Service only defines its data of interest
and shares its conclusions, dynamic workflows can be created without the need

3 http://ontop.inf.unibz.it/
4 http://d2rq.org/



The MASSIF Plaform 15

to predefine a static workflow. A special Service, the Notification Service, gathers
all final knowledge and sends it to all interested parties outside the platform,
through the Gateway. Each service can decide if the data is ready and label it as
final knowledge. The flexibility of the platform allows multiple implementations
for the Service components. Multiple types of reasoners can be used and other
techniques such as data mining and machine learning can easily be applied within
these Services to process and retrieve knowledge.

3.5 Policy Management

This section elaborates on how inconsistencies are handled in the platform. Since
the platform allows users to define their own mapping, describing how raw data
should be semantically annotated in the Context Adapters and which data their Ser-

vices should consume through registering OWL class expressions, inconsistencies
can occur. The following scenarios can occur:

1. A Service subscribes with an OWL class expression which makes the SCB’s
ontology inconsistent. To resolve this, the SCB will check at the time of sub-
scription whether the registered OWL class expression is consistent with the
remainder of the ontology. If this is not the case, the subscription of the ex-
pression is deemed unsuccessful and it is not added to the ontology. A warning
is sent to the service provider that the subscription has failed.

2. A Context Adapter or Service publishes data on the SCB and when reasoned
upon in the SCB, a realization inconsistency occurs. This inconsistency can
have two causes:

(a) A Context Adapter or Service failed to format the semantic data correctly.
When the malformed data is reasoned upon in the SCB, a realization incon-
sistency occurs. For example, the types of an individual have been modeled
as two classes that are in fact disjoint with each other.

(b) A Service has recently added an OWL class expression that does not make
the ontology inconsistent upon consistency checking, but does causes prob-
lems upon realization. For example, a Service can subscribe a new class
expression that is disjoint with a previously subscribed filter rule.

When these types of inconsistencies occur, the cause of the problem is first de-
termined. To achieve this, all class expressions that have been registered by the
Services are removed and a realization consistency check is performed on the
SCB’s core ontology and the published data. When this causes inconsistencies,
this means that we are dealing with inconsistencies of type 2.a. The platform
can then track which component published the data, deactivate it and send a
warning.
If this does not cause any problems, this means that we are dealing with incon-
sistencies of type 2.b. The platform needs to trace the Service that subscribed
the OWL class expression that is causing problems. Therefore, the subscribed
class expressions are added one by one to the SCB’s core ontology and for each
addition a consistency check is performed on the published data. The expres-
sion that causes the inconsistency is removed from the ontology and a warning
is sent to the subscriber.



16 Pieter Bonte et al.

3.6 Supporting Components

The platform provides multiple additional services such as logging, back-up of the
knowledge in the Services and visualization of the workload.

3.6.1 Journaling

Tailored logging is provided in the core of the platform to track the data flow
between the different components. Each component logs its output data, if any, and
its destination in the platform. The Services typically log their inferred knowledge
they would like to share and indicate the SCB as the destination. After determining
which Services are interested in the data, the SCB will log to which Services the
data is sent. Logging is important to provide accountability. It allows to justify
the choices made at a given time.

3.6.2 Backup

Since robustness and resilience is an important aspect in the IoT, a specialized
backup system is provided to minimize the data loss upon failure. All messages
between components are logged using the journaling and each service makes a
backup of its current knowledge base at discrete intervals to further minimize
data loss.

3.6.3 Cached SCB

The SCB is the central communication link between different components and
can thus easily become a bottleneck. The performance of the SCB is dependent
on the used ontology, because reasoning is used to determine the services that are
interested in the arriving data. To optimize the performance of the SCB, intelligent
caching is introduced to match similar events without the need to reason.

Since the platform is closed, all data traveling through the SCB has been
produced in the platform, it can be assumed that each Context Adapter or Service

can only produce a finite number of conceptually distinct messages. Note that only
the difference in structure of these messages on a TBox level is considered, not the
specific ABox initializations.

The filter rules in the SCB define the high level structure of the expected data.
When a filter is triggered, it is possible to map the specific part of the message,
responsible for the match, on the filter rule. If this is done on a high level, the
presence of the specific structure can be checked with other messages to decide if
there is a match.

To determine the data in the message, responsible for the match, the reasoning
needs to be reversed and investigated to see which axioms led the reasoner to
infer the data as the selected rule, which is an OWL class. The structure of the
responsible data is saved in a cache, enabling a simple look-up the next time
a similar message passes by. The cache utilizes the Least Recently Use (LRU)
strategy, discarding the least used entries first.



The MASSIF Plaform 17

Fig. 4: Visualization of a data flow in the MASSIF platform, visualized as a graph. The
vertices represent the components and the edges represent the dataflows between them.

Fig. 5: Visualization of the platform workload. The number of the current processed
messages is shown for each component.

3.6.4 Visualization

Visualization tools are available to monitor the data flow through the platform.
Keeping a global overview of the data flow when operating in a data-driven, service-
oriented environment can become complicated. The use of visual aids simplifies
this process.

Figure 4 depicts how the flow through the platform can be monitored on a
graphical level. The workflow is visualized as a graph. The vertices represent the
services and the edges represent the dataflows between them. Each color represents
a different flow of data.

The workload inside the platform is visualized in Figure 5. For each com-
ponent, the number of messages that are being processed are visualized. This



18 Pieter Bonte et al.

Fig. 6: A detailed inspection of the PressureMonitoringService, showing the initial
JSON-message and the executed SPARQL-queries in the Service.

provides a visual understanding of the work distribution. Clicking on one of the
components enables a deeper inspection. As visualized in Figure 6, the initial
JSON-message is shown and the executed SPARQL Protocol and RDF Query
Language (SPARQL) [47] query in the selected component. These tools allow a
better understanding of the internal flow of messages in the platform.

3.6.5 Message Broker

To enable resilient distributed communication, MASSIF allows the integration of
highly efficient message brokers such as RabbitMQ 5 and Kafka 6. The integration
of a message broker allows to communicate with non-semantic services. Communi-
cation wrappers have been provided, such that nothing needs to be changed in the
implementation of existing Context Adapters or Services. These wrappers function
as an additional layer between the existing components and the message broker
and handle all communication. Furthermore, one can choose how to distribute the
components over various distributed nodes, e.g., Services requiring huge amounts
of processing power can be run on separate nodes of a processing cluster. Figure 7
visualizes the message broker integration in MASSIF. As depicted in Figure 7, one

5 https://www.rabbitmq.com/
6 http://kafka.apache.org/



The MASSIF Plaform 19

Semantic Communication bus

Gateway

Context 

Adapter B

Service A Service B Service C

Context 

Adapter A

Context 

Adapter C

JSON, tagged

JSON, tagged

Event OWL individuals

Service D

Event OWL individuals

Legend:
Implementing API

General

node 1

node 2

node 3node 4node 5

Service Layer Service Layer

Flow Decision Layer

Semantic Annotation Layer

Input Layer

Message Broker

JSON, tagged

Event OWL individuals

Fig. 7: Architecture of MASSIF with integrated message broker.

can choose to distribute the Gateway and Context Adapters on one node, since they
require low processing, the SCB on another node and to distribute the Services

over two node since they require most processing resources.

4 Two Use Cases

MASSIF has been evaluated in the Organizing Home Care Using a Cloud-based
Platform (OCCS)7 project and the R.A.M.P.8 project. R.A.M.P. is short for Real-
time Automation of Media Production for interactive radio and conferences. The
use cases illustrate the strengths and the performance of the platform in two real-
life scenarios. Both cases combine low-level data with background knowledge to
extract high-level knowledge.

4.1 eHomeCare

The following sections describe the realization of the OCCS project and give a
general overview, a description of the used ontology, an overview of the created
Services and Adapters and finally an evaluation of the created system.

7 http://www.iminds.be/en/projects/2014/04/07/ocareclouds
8 http://www.iminds.be/en/projects/2014/03/05/ramp



20 Pieter Bonte et al.

Fig. 8: Import schema of the used ontology.

4.1.1 General Overview

The OCCS project presents a pervasive health use case, demonstrating how health-
care can benefit from the IoT. The OCCS project tackles problems in the home
care environment, enabling care organization through cloudy-like services. Hospi-
tals and residential care homes need to cope with the increasing elderly popula-
tion and the shift from acute to chronic diseases, resulting in a reduced number
of available places. An elaborative project description can be found in De Backere
et al. [18].

The care receiver’s home has been provided with a small amount of discrete
sensors and a specialized TV or tablet to interact with. Each caregiver has a
smartphone to interact with the platform. By combining the low-level data from
the sensors and the smartphones through semantic reasoning, high-level knowledge
can be retrieved. From this high-level knowledge, it can, for example, be decided
that a care receiver has not been able to get out of bed alone, since the bed
pressure sensor is abnormally long active. The system can then decide who might
be the designated person to help the care receiver. The selection of the best suited
caregiver is based the on the type of relationship the patient has with his helping
staff, the competences of the caregivers and their status.

4.1.2 The Ontology

The Ambient-Aware Continuous Care Ontology [40] is used to model all data in
the home care environment. Figure 8 shows that it is a modular ontology, con-
taining multiple ontology layers. This allows each distinct Service to load only the
necessary part of the ontology. An extensive elaboration of the ontology can be
found in Ongenae, et al [40].



The MASSIF Plaform 21

Semantic Annotation Layer

RFID sensor

p
re

ss
u

re
 s

e
n

so
r D

O

O

R

-Task list

-Task updates

-Patient information

Service Layer

Flow Decision Layer

Input Layer

Semantic Communication bus

Gateway

Matching Service

Help

Selection

JSON, tagged

JSON, tagged

Event OWL individuals

JSON, tagged

Event OWL individuals

Pressure

Adapter

Legend:

MASSIF

Use case

RFID

Adapter

TV

Adapter

Visit

Adapter

Trend

Adapter

Task

Adapter

Person

Adapter

Pressure

Monitoring

RFID

Monitoring

Task

Manager

Trend

Manager

Medication

Manager

Notification

Service

Input

IoT sensor 

gateway

TV sensor

Fig. 9: An visual overview of the designed Adapters and Services for the OCCS use case.
Multiple sensors characterize the environment, enabling context-awareness in the home of the
care receiver. These sensors transmit their observation through an IoT sensor gateway to the
MASSIF platform.

The ambient-aware continuous care ontology describes the eHealth sector. It
has been constructed in collaboration with stakeholders, such as nurses, caregivers
and physicians, social scientists and ontology engineers.

– The Upper ontology describes general classes, relations and axioms. The Upper
ontology allows data to be related with a unique ID.

– The Sensor & Observation ontology allows the filtering of data. It imports
the Wireless Sensor Network (WSN) ontology and extends it with additional
eHealth related concepts.

– The Context ontology describes the contextual information regarding the envi-
ronment. It contains all localization information.

– The Profile ontology models all profile information about the patients and the
staff members. Each Person is linked to a Profile, that can either be a basic
profile or a risk profile. This has been described as axioms, allowing the risk
patients to be automatically inferred.

– The Role & Competence ontology describes roles and competences in the eHealth
sector. Roles, based on competences, can be automatically inferred through the
use of axioms.

– The Task ontology models the task and call handling.
– The Medical ontology models medical concepts such as observed parameters

and pathologies.

Table 2 summarizes the metrics of the proposed ontology.



22 Pieter Bonte et al.

Table 2: Ontology metrics for the used ontology in the eHomeCare use case.

#Axioms 3065
#Logical Axioms 1736
#Individuals 147
#Classes 409
#Object Properties 185
#Data Properties 53
DL Expressivity SHOIQ(D)

4.1.3 Designed Adapters

Multiple Context Adapters have been implemented, to semantically annotate the
raw data. There are seven Adapters present in the OCCS project. Figure 9 shows
the created Adapters and Services.

– A PressureAdapter, enriches all data transmitted by a pressure sensor.
– A RFIDAdapter, translates all received Radio Frequency Identification (RFID)s

from caregivers logging in, indicating their presence in the home of the care
receiver.

– A TVAdapter, annotates all data sent by the TV, capturing the activity of the
patient, such as volume and channel changes.

– The TaskAdapter handles all data regarding tasks: newly created tasks, task
updates, finished tasks. Some examples of possible tasks are: doing groceries,
helping the care receiver out of bed, cooking and cleaning.

– The VisitAdapter handles all data regarding planned visits: new visits, updated
visits and canceled visits.

– The PersonAdapter enriches all data describing relations between caregivers and
care receivers. For example, when a new caregiver will aid a care receiver, the
caregiver is first added to the trust circle of the care receiver. The trust circle
indicates which persons the care receiver is familiar with.

– The TrendAdapter shows how the data-driven platform can handle specific re-
quests. Trend information about the activity can be requested, based on multiple
sensors. The TrendAdapter only enriches the request data. The processing of the
trend data is done in the TrendManagerService. The trend information can give
an indication of how active a care receiver is. Some care receivers should do at
least some movement during the day.

4.1.4 Specific OCCS Services

Multiple Services have been implemented, these are thoroughly discussed below.
Note that the Services load static data from a database at startup. This data
contains the profile information about the caregivers and the care receivers, in-
formation about the numerous sensors and devices and recurrent tasks. This data
is parsed to the semantic model and loaded in the individual ontologies of these
Services.

– The RFIDMonitoringService registers itself to all semantic RFID-data passing
over the SCB. The Service receives this particular data by registering the filter
rule depicted in Listing 3.



The MASSIF Plaform 23

Listing 3: Example filter rule for retrieving RFID data.

RFIDFilter ≡ Event and (hasContext some
(isObservationOf some (hasSensorPart some RFIDSensor)))

The service captures the RFID-data and retrieves the person who is linked to
the received RFID, which is not available in the raw sensor data. Finally, it
sends an event to the SCB, stating that a specific person has logged in at a
given location. Other services, e.g., the TaskManagerService, might be interested
in this kind of information. Listing 4 shows the generated event from the Service.

Listing 4: Resulting Event from the RFIDMonitoringService

ClassAssertion(upper:Event regEvent)
ClassAssertion(careTask:RegistrationTask regTask)
ClassAssertion(profile:Person regPatient)
ClassAssertion(profile:Person regHelper)
...
ObjectPropertyAssertion(upper:hasContext regEvent regTask)
ObjectPropertyAssertion(task:assignedTo regTask regHelper)
ObjectPropertyAssertion(task:checkedInWith regHelper regPatient)
...

The last axiom indicates that the regHelper, which resembles the registered care-
giver, has checked in with the patient.

– The TaskManagerService handles all task information. The initial tasks are loaded
from the database into the ontology of the TaskManagerService. These tasks
cover all activities a caregiver performs to aid the patient. When a location
update, originating from the RFIDMonitoringService, arrives, all the tasks that
this specific person should perform will be calculated and send, through the
NotificationService, to the device of the caregiver. These tasks are derived based
on the profile of the caregiver. New, updated and finished task information will
also arrive in this service, to be able to keep an up-to-date overview of the task
lists.

– The HelpSelectionService receives all activated tasks and determines who is the
most suited person to execute these tasks, depending on location, relation with
the care receiver and profile. It links the selected person to the task, labels it
as final and sends it to the SCB. A thorough discussion of the task assignment
can be found in Bonte, et al [11].

– The PressureMonitoringService receives data originating from a pressure sensor,
located in the bed of a care receiver. The sensor data indicates the activity of
the pressure sensor and thus the presence of the patient. If a patient is longer
in bed than usual, without being able to get out alone, a task is generated to
get this person out of bed. Listing 5 shows an example query that determines if
the patient is longer in bed than usual. Note that the time a patient sleeps on
average is calculated before and inserted in the query at query time.

Listing 5: Example query

PREFIX xsd: <http:// www.w3.org /2001/ XMLSchema#>
PREFIX task: <http:// occs.intec.ugent.be/ontology/TaskAccio.owl#>
PREFIX profile: <http:// occs.intec.ugent.be/ontology/ ProfileAccio .owl#>
PREFIX wsna: <http:// occs.intec.ugent.be/ontology/ WSNadjustedAccio .owl#>
PREFIX temporal: <http:// swrl.stanford.edu/ ontologies /built -ins /3.3/

temporal.owl#>

SELECT ?patient ?time ?timeTask ?date WHERE {
?getup task:executedOn ?patient.



24 Pieter Bonte et al.

?getup task:executedDuring ?period.
?period temporal:hasFinishTime ?timeTask.
?sensorBoard profile:associatedWith ?patient.
?observation wsna:isObservationOf ?sensorBoard.
?observation temporal:hasValidTime ?validTime.
?validTime temporal:hasTime ?time.
FILTER (?time >= AVGSLEEP ())}

To better involve the patient in the process, the care receiver is asked if help is
necessary. The option to stay in bed is still possible. If help is required, the task
is updated, picked up by the HelpSelectionService and the most suitable person
is asked to help the care receiver out of bed.

– The TrendManagerService obtains all kinds of sensor data, enabling trend anal-
ysis. Compared to the filter in Listing 3, the TrendManagerService registers a
filter describing the interest in all types of sensor data, as shown in Listing 6.

Listing 6: Example filter rule for retrieving all sensor data.

SensorFilter ≡ Event and (hasContext some
(isObservationOf some (hasSensorPart some Sensor)))

The Service stores all sensor data in an external triplestore9. This allows the
analysis of the activity of the care receiver. The Service allows to request a
summary of the activity of one or more sensors. The caregivers can interpret
the summary to determine how active the patient has been in a given time
interval.

– The MedicationManagerService will not receive any data, but will inform care
receivers when they should take their medication and the specific amount. This
information is retrieved from Vitalink10, which is an online government plat-
form, containing a complete patient information dossier. The Service will analyze
the dossier and determine which medications should be taken at what intervals.
It will send reminders what medication to take at given time intervals to stim-
ulate the patients to take their medication.

– The NotificationService captures knowledge from the SCB that is ready to be
shared with the outside world. Other services can indicate that their knowledge
can be sent to the caregivers by making it an instance of the Notification ontology
concept. It will analyze the arriving event and make sure the information is sent
to the correct device. The NotificationService will register to all Notifications on
the SCB, as depicted in Listing 7.

Listing 7: Example filter rule for retrieving all Notifications.

NotificationFilter ≡ Event and (hasContext some Notification)

Additional services can be added to the platform, providing the caregivers and
care receivers with supplementary information.

4.1.5 Results

To evaluate the performance of the platform in the described use case, the time
necessary to complete one scenario is presented. According to Alshareef et al. [5],
an eHealth help system should be able to respond within 5 seconds. The scenario

9 http://stardog.com/
10 http://www.vitalink.be/



The MASSIF Plaform 25

Table 3: An overview off all average processing times for each component in each system call.
The averages (µ) and the standard deviation (σ) are both given in milliseconds.

Pressure Sensor Help Needed Task Accepted
µ(ms) σ(ms) µ(ms) σ(ms) µ(ms) σ(ms)

Gateway <1 <1 <1 <1 <1 <1
MatchingService 0.62 0.49 0.54 0.50 0.54 0.50
ObservationAdapter 5.77 1.22 - - - -
TaskAdapter - - 3.15 0.82 3.31 0.87
SCB-0 0.62 0.49 0.46 0.50 0.62 0.49
SCB-1 0.50 0.50 0.54 0.50 0.54 0.50
SCB-2 0.54 0.50 - - - -
HelpSelectionService 55.50 14.18 75.96 14.23 57.54 11.24
PressureMonitoringService 230.50 23.17 - - - -
TaskManagerService 32.65 15.96 31.50 13.25 31.62 8.96
NotificationService 19.38 2.76 22.81 12.99 19.62 1.62

consists of an automatic trigger from a pressure sensor, informing the system that
the patient is still in bed. The system will notice that the patient is longer in bed
than usual and will automatically send a notification to the patient. The patient
can inform the system if help is needed. This way, the patient is involved in the
automated decision process. If the patient decides that help is required, the system
will search for the most suited caregivers to aid the patient. They automatically
receive a message with the question if they could go and help the patient out
of bed. Note that the message automatically disappears if one of the caregivers
accepts the task.

The scenario was evaluated 35 times. The first three and the last two results
were dropped to eliminate the influence of the warm-up and cooling down period.
The averages are calculated over the remaining 30 iterations. The evaluation was
done on a Ubuntu 14.04 server with an Intel Xeon CPU E5520 (16 cores) @
2.27GHz with 12 GB of memory.

As presented in Table 3, it is clear that the platform overhead (Gateway,
Adapters, SCB) has limited influence. The table shows multiple SCB entries, this is
because the Services need to exchange their inferred knowledge and thus messages
pass the SCB multiple times for each call.

Figure 10 visualizes the time spent in the Services, grouped for each call. The
time spent in the various Services differs, this is due to the fact that each Ser-

vice performs a different reasoning task. The PressureMonitoringService performs
the most complex task in this scenario, as it needs to decide if help should be
requested to aid the patient. The HelpSelectionService takes longest in the second
call, where the system needs to select the best suited caregivers to aid the patient
in the current situation.

Figure 11 visualizes the performances of the Cached SCB as discussed in Sec-
tion 3.6.3, compared to the normal SCB. The graph shows the time needed for
both buses to execute 15 successive calls. Thus, the x-axis can be seen as a timeline.
Note that the warm-up period was not omitted to investigate the performance of
the cache over time. At first, the cached SCB is less efficient, because additional
reasoning needs to be performed to select the dominant parts of data that should
be cached. After a few misses in the cache, only hits occur and the needed time
declines to less than 1 millisecond. The normal SCB also starts performing better



26 Pieter Bonte et al.

0

50

100

150

200

250

300

350

400

Pressure Help Needed Task Accepted

ti
m

e
 (

m
s)

Scenario Call

HelpSelectionService PressureMonitoringService

TaskManagerService NotificationService

Fig. 10: Evaluation of the designed Services in the OCCS use case. The scenario consists of
three calls. Pressure: the pressure sensor indicates that the patient is still in bed. If the system
sees that the patient is longer in bed than usual, it asks the patient if help is needed. Help
Needed: the patient indicates that help is welcome and the system will select the most suited
caregivers for this task. Task Accepted: one of the caregivers accepts the task.

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

ti
m

e
 (

m
s)

Call number

SCB

Cached SCB

Fig. 11: Evaluation of the Cached SCB compared to the normal SCB. After a few cache misses,
only hits occur and the time spent in the Cache SCB gets down to less than one millisecond.

after a few calls, this is due to the performed optimizations inside the reasoner.
Eventually the time spent in the Cached SCB gets down to less than one millisec-
ond.

4.2 Media

The following sections describe the realization of the media use case and give a
general overview, a description of the used ontology, an overview of the created
Services and Adapters and finally an evaluation of the created system.



The MASSIF Plaform 27

Semantic Annotation Layer

Service Layer

Flow Decision Layer

Input Layer

Semantic Communication bus

Gateway

Matching Service

Keyword

Service

JSON, tagged

JSON, tagged

Event OWL individuals

JSON, tagged

Event OWL individuals

Commercial

Adapter

Legend:

MASSIF

Use case

Track

Adapter

Manual Director

Adapter

Keyword

Adapter

Song

Service

Decide Camera 

Service

Decide Overlay 

Service

Select Speaker 

Service

Commercial

Service

IoT sensor 

gateway

Rule

Adapter

Overlay

Input
Microphone Status

Adapter

Fig. 12: A visual overview of the designed Adapters and Services for the R.A.M.P. use case.
Multiple sensors characterize the environment, enabling context-awareness in the studio. These
sensors transmit their observation through an IoT sensor gateway to the MASSIF platform.

4.2.1 General Overview

The general idea behind the media use case is elaborated below, or more specifically
the Real-time Automation of Media Production (R.A.M.P.) project. Both a visual
radio and conference use case have been designed, however only the radio case will
be elaborated upon. The idea behind both cases is equal: the studio or conference
room has been equipped with multiple ubiquitous devices, producing contextual
data continuously. Combining these with background knowledge allows to infer
high-level knowledge to control various cameras and video overlays. A mapping of
the created system to the MASSIF platform is depicted in Figure 12.

4.2.2 Radio

The radio scenario aims at providing visual radio with interactive content, based
on the subject of the radio show or the played song in an automated manner,
with minimal input from the DJ. The MASSIF platform is the brain of the de-
signed system. It captures and integrates all available data regarding the show
and the events inside the studio. The different triggers contain the activity of each
microphone, the status of the played songs and commercials, information about
certain detected keywords and the configuration of the studio and the cameras.



28 Pieter Bonte et al.

Fig. 13: Import schema of the used ontology. The external imported ontologies are depicted in
grey.

These triggers result in the selection of the best suited camera or the activation
of certain visual overlays.

4.2.3 The Ontology

The created radio ontology makes use of existing ontologies, as shown in Figure 13.
The used ontologies are:

– The Music Ontology11 describes music related concepts.
– Friend of a Friend12 (FoaF) defines people-related terms.
– Sioc Core Ontology13 is an ontology for describing the information in online

communities.
– The vCard Ontology14 describes electronic business cards. They contain names,

addresses, phone numbers, email addresses, etc.
– The Time ontology15 describes the temporal content.

Table 4 summarizes the metrics of the proposed ontology.

Table 4: Ontology metrics for the used ontology in the media use case.

#Axioms 4989
#Logical Axioms 1582
#Individuals 109
#Classes 247
#Object Properties 384
#Data Properties 203
DL Expressivity SHOIQ(D)

11 http://musicontology.com/
12 http://xmlns.com/foaf/spec
13 rdfs.org/sioc/ns
14 http://www.w3.org/2006/vcard/ns-2006.html
15 http://www.w3.org/TR/owl-time



The MASSIF Plaform 29

4.2.4 Designed Adapters

To allow extracting useful information from the data originating from multiple
sources, the data is first semantically annotated in one of the various created
Context Adapters.

– The CommercialAdapter receives data describing the start and the stop of a
commercial and enriches it to the semantic model.

– The TrackAdapter annotates data regarding the start and stop of a music track.
– The MicrophoneStatusAdapter receives data describing the microphone activity

of one of the speakers. This alternates between active and inactive.
– The KeywordAdapter receives the detected keywords during the show and en-

riches the data. The keywords are detected through the use of speech recognition.
The detector listens for a list of keywords that have been extracted from the DJ
preparation. The DJ prepares a document a few minutes before the start of the
show, containing a summary of the various topics handled during the show.

– The ManualDirectorAdapter is used for the semantic annotation of the data re-
sulting from the overruling mechanism allowing to show a specific person. This
is further explained in Section 4.2.6.

4.2.5 Specific R.A.M.P. Services

The various Services react on the received data and decide to manipulate the
cameras or visualize additional data if necessary. Each Service reasons on the
integrated data and generates a Sequence of shots that could be shown in the
video stream. The creation is based on some precondition, e.g., when the DJ’s
microphone is active. Semantic Web Rule Language (SWRL)-rules [28] are used
to create these Sequences. Listing 8 shows this first type of rules in (1). The use of
rules allows easy adaptation of the automated process. The rule creates a Sequence

when the microphone of the DJ is active.

Listing 8: SWRL-rule examples

(1) Microphone (?m),capability (?m,DJ),unitState (?m, On)
-> Sequence(Sequence_dj)

(2) Track(?t),capability (?g,MainGuest)
-> member(Sequence_dj ,Shot1),show(Shot1 ,?g)

A second type of rule in (2) generates Shots to be shown in the Sequence. It
shows how the Shot is added to the created Sequence. The Shot can show the main
guest and can only be added if there is such a guest. The separation of the two
types of rules allows multiple combinations in each Service, where multiple rules of
each type can be active. When an event arrives at one of the Services, the reasoner
retrieves all instances of the type Sequence and Shot and their attributes, leaving
the creation of the Sequences and Shots up to the reasoner.

The created Services are elaborated below:

– The Select Speaker Service gathers all information regarding the microphone ac-
tivity, the configuration of the room and the information of who is sitting on
which seat. Combining the low-level microphone activity with the room con-
figuration allows to determine which exact person is speaking. Note that only
the microphone activity arrives as an event at run time, the room configuration



30 Pieter Bonte et al.

Fig. 14: User interface for the adaptation of the rules by non-technical users.

and the profile information is loaded into the ontology at startup. Based on
the defined rules, the outcome of the reasoning task determines who should be
selected to show.

– The Decide Camera Service captures the possible shots, e.g., from the Select

Speaker Service and determines what the best suited cameras and camera posi-
tions are to show a given person. The service loads the camera configuration at
startup, stating the possible presets for each camera. The presets define which
seats can be shown with a given certainty and quality. The Decide Camera Ser-

vice will use reasoning to determine the best camera preset for a specific shot
in a selected sequence. The sequence gets selected based on its priority. When
a sequence of shots arrives with a higher priority, the current sequence will
be interrupted and the new sequence will be shown. To provide fluent camera
switching towards the viewer, the service will make sure that the same camera
with a different preset is never selected sequentially. If this would be the case,
the viewer would witness the repositioning of the camera. Therefore, after the
selection of a new camera shot, the service will wait until the repositioning has
finished before switching shots. Reasoning is performed to enable the camera
selection which facilitates fluent camera positioning.

– The Decide Overlay Service captures the various activities in the studio and
selects the correct overlay based on those activities. For example, different over-
lays are shown based on the fact that someone is speaking, a keyword has been
detected or a song is playing.

– The Commercial Service contains all the information regarding the played com-
mercials. It provides rules that can specify how to react on the starting or
stopping of a commercial. These rules define who should be shown in case of
the described event.

– The Song Service captures the information about the played songs. The rules
can define how to react when a song is started or stopped.

– The Keyword Service is a bit different since it does not allow any manipulation
through the use of rules. It receives a spoken keyword as input and will determine
which overlay should be shown upon detecting the keyword. This means that
the outcome cannot be adapted.

4.2.6 Reasoning Manipulation

To allow control over the automated video composition, a visual Rule Adapter is
provided which allows end users to adapt the reasoning decisions in the Services.

The rules in each Service can be adapted to manipulate the automated process.
The manipulation of the rules has been abstracted, eliminating the need for the
end user to have specific knowledge regarding rules or the ontology. Each Service

provides high-level generic rules, which can be made more specific. The provided
rules are based on the possible events, during the show or conference. As shown in
Figure 14, a possible rule might be the fact that a track starts playing and multiple



The MASSIF Plaform 31

predefined actions can be chosen for that fact. Listing 9 shows an example of a
high-level rule with the possible event as the antecedent in (2) and the predefined
actions as consequences in (5) and (7).

Listing 9: High-level rule example

(1) {"description": "A track starts playing",
(2) "antecedent": {
(3) "rule": ["Track(?t), q:isActive (?t,true) -> Sequence(Sequence_Song)"

]},
(4) "consequences": [
(5) {"subRule":"Track (?t), capability (?guest , MainGuest)

-> member(Sequence_Song , Shot1), show(Shot1 , ?guest)",
(6) "description":"Show the main guest"},
(7) {"subRule":"Track (?t), capability (?dj , DJ)

-> member(Sequence_Song , Shot2), show(Shot2 , ?dj)",
(8) "description":"Show the DJ"}]}

The descriptions in (1), (6) and (8) show how the rules are mapped to readable
sentences, alleviating the non-technical user from the technical details.

The antecedent and the consequences contain a (sub)rule, which is a valid
SWRL-rule. When the end user selects one (or more) of the predefined conse-
quences, the antecedent rule (3) and the selected subrules (5) or (7) are added to
the ontology, allowing the reasoner to incorporate the users preferences.

To provide the viewer a more natural experience, additional properties can be
set.

– Priorities: Since multiple rules can be activated at the same time, the video
composition can be fine-tuned by specifying which rules have a higher priority
than others. For example, the fact that the DJ is speaking might be more
important than the fact that a track starts playing.

– Randomness: As depicted in Figure 14, multiple actions (subrules) can be
selected for one antecedent. The order in which these actions occur can be
specified. However, one can add a randomness factor to mix up the order and
provide a more natural flow.

– Timing: The time period each camera shot is selected, can be specified. For
example, one could opt to capture the DJ longer than his guests.

The Decide Camera Service takes all these options into account when deciding what
to show and when to show it. When a high-priority Sequence arrives, the current
camera shot should be interrupted, even when the specified timing has not been
passed.

4.2.7 Reasoning Overruling

A Manual Director tool was designed to explicitly overrule the automatic camera
selection. This provides the end users control over the automated process. Through
the use of the Manual Director tool, one can manually select the seat that should
be captured on camera. This overrules the selection made by the automated rea-
soning process. A special Context Adapter can enrich this data and directly create
a shot sequence of one shot with the highest possible priority. This shot sequence
will be captured by the Decide Camera Service. This Service will show the desired
seat directly since this sequence has the highest possible priority. In the manual
director, it is possible to define how many seconds the manual director should



32 Pieter Bonte et al.

0

5

10

15

20

25

30

35

40

Mic On Keyword
Detected

Mic Off Track Start Track Stop Commercial
Start

Commercial
Stop

ti
m

e
 (

m
s)

Scenario Call

SelectSpeakerService SongService

CommercialService KeywordService

DecideCameraService DecideMacroService

Fig. 15: Evaluation results of the designed Services for the R.A.M.P. use case. The scenario
consist of seven calls, which are explained in the beginning of this Section.

overrule the system, which corresponds to the time period a shot should be shown
in a shot sequence. After the defined period of time, the automatic selection of
shots continues.

4.2.8 Results

To evaluate the performance of the platform in the described use case, the time
the system needs to coordinate a typical radio show was evaluated. Since this
coordination should be visually appealing, the system should react within 100
milliseconds. According to Card et al. [14], a delay of 100 milliseconds is not
troublesome for the human perception. The show consists of the following events:

1. The DJ turns on his microphone and talks for 5 seconds.
2. A special keyword is detected.
3. The DJ turns off his microphone.
4. A new track starts playing
5. The track stops playing.
6. A commercial starts playing.
7. The commercial stops.

The scenario was evaluated 35 times. The first three and last two results were
dropped to eliminate the influence of the warm-up and cooling down period. The
averages are calculated over the remaining 30 iterations. The evaluation was done
on a Ubuntu 14.04 server with an Intel Xeon CPU E5520 (16 cores) @ 2.27GHz
with 12 GB of memory.

Table 5 presents the overall average times for all components in each call. It is
clear that the Services have the greatest impact on the system, since these com-



The MASSIF Plaform 33

Table 5: An overview off all average processing times for each component in each system call.
The averages (µ) and the standard deviation (σ) are both given in milliseconds.

Mic Keyword Mic Track
On Detected Off Start

µ(ms) σ(ms) µ(ms) σ(ms) µ(ms) σ(ms) µ(ms) σ(ms)
Gateway <1 <1 <1 <1 <1 <1 <1 <1 . . .
MatchingService 0.31 0.46 0.38 1.00 0.23 0.42 0.38 0.49 . . .
MicrophoneAdapter 1.85 0.82 - - 1.81 0.83 - - . . .
KeywordAdapter - - 1.58 0.57 - - - - . . .
TrackAdapter - - - - - - 1.50 0.57 . . .
CommercialAdapter - - - - - - - - . . .
SCB-0 0.46 0.50 0.42 0.49 0.42 0.49 0.50 0.50 . . .
SCB-1 0.58 0.49 - - 0.54 0.50 0.69 0.46 . . .
SelectSpeakerService 13.92 7.52 - - 11.27 2.30 - - . . .
SongService - - - - - - 13.81 2.67 . . .
CommercialService - - - - - - - - . . .
KeywordService - - 1.23 0.50 - - - - . . .
DecideCameraService 18.27 3.61 - - 2.46 0.63 20.92 8.13 . . .
DecideOverlayService 1.00 <1 1.02 <1 1.08 0.47 1.46 0.50 . . .

Track Commercial Commercial
Stop Start Stop

µ(ms) σ(ms) µ(ms) σ(ms) µ(ms) σ(ms)
. . . <1 <1 <1 <1 <1 <1
. . . 0.31 0.46 0.19 0.39 0.23 0.42
. . . - - - - - -
. . . - - - - - -
. . . 1.65 1.00 - - - -
. . . - - 1.50 0.57 1.88 0.97
. . . 0.69 0.72 0.42 0.49 0.42 0.57
. . . - - 0.81 0.39 - -
. . . - - - - - -
. . . 12.23 2.55 - - - -
. . . - - 13.31 3.11 9.92 1.47
. . . - - - - - -
. . . 1.12 0.51 20.62 5.37 - -
. . . 1.19 0.62 - - - -

ponents perform reasoning.

Figure 15 visualizes the average time spent in each Service in each step of the
scenario. The other components have negligible impact and have thus been omit-
ted. It shows that the Decide Camera Service needs about 20 milliseconds when the
microphone gets turned on, a track starts or when a commercial starts. However,
when the microphone is turned off, only a small fraction of time is spent in the De-

cide Camera Service. This is due to the fact that the system is configured (through
the use of the rules) to show an overview camera shot when nobody is speaking.
The overview shots do not change and are cached for performance measures. In
the other scenario steps (Keyword detected, Track stops and Commercial stops),
there is no camera activity, because these Services have been configured not to
manipulate the cameras as a results of its incoming triggers. Note that this can be
easily changed by updating the rules. It is notable that the Decide Overlay Service

is quite efficient. This is due to the fact that most of the overlay extraction has
been done as a preprocessing step. During the show this is only a simple look-up.



34 Pieter Bonte et al.

Furthermore, it is clear that the system is efficient and causes a maximum
delay of less than 35 milliseconds. This is more than acceptable, since a delay of
less than 100 milliseconds is not troublesome for the human perception [14]. It
is important for visual radio that delays are minimized as much as possible to
provide a fluent flow to the end user. The high performance results in a scalable
platform that enables the possibility for multiple concurrent scenarios.

5 Discussion

We have presented the MASSIF platform, a platform that can successfully enable
dynamic and high-level coordination between IoT services. Through two use cases,
we have shown that the platform can efficiently handle generated IoT data and also
allows to perform complex reasoning. However, there are some known limitations
that will be addressed in our future work.

MASSIF is an event-based system, in the sense that it can perform advanced
reasoning on event data. Processing of continuous flows of streaming data is cur-
rently not the focus of MASSIF. Examples of such streaming data are Face-
book and Twitter streams or current measurements of streaming sensors. Each
of these streams would be annotated by its own Context Adapter. Currently a
single adapter can annotate more than 100 messages per second, as presented in
Table 3 and 5. However, more than 500 messages per second would flood the Con-
text Adapter. Since each component can run on a separate node of a processing
cluster, the rest of the system might not suffer from this congestion. Once the data
is annotated, the Services need to process the data, these can again congest if the
arrival rate is higher than the processing rate. Similarly, if the MASSIF platform
is deployed in a distributed fashion, the rest of the platform will not be hindered
when one service congests, at least if they are not dependent on the outcome of
the congested service. One way to mediate this congestion is to subscribe the filter
rules, which indicate the data the services will consume, more intelligently. One
could opt to filter most of the data in the SCB, limiting the data arrival rate in
the services. The uptake of stream reasoning is a high priority in our future work.
However, current stream reasoning systems do not support complex reasoning.

A second limitation is the use of the tag in the low-level sensor data. In the pre-
sented use cases, the sensor integration is supported by the DYAMAND platform
[39], which was developed at the IBCN16 research group. The DYAMAND plat-
form allows the detection and integration of sensors and devices. It utilizes a model
to make a distinction between sensors. The tag is a result of this model. Similar
functionality could be offered by mapping the internal model used by other sensor
gateways on the tags. In the future, we wish to offer an API to sensor (gateway)
developers that allows them to request the available tags in the system. These tags
would be accompanied by a human-readable description. This would allow these
developers to choose the appropriate tags for the data they send to the platform.
Offering such an API enables the integration of data into the platform that has
not been semantically annotated in an easy and straightforward way. When the
data does not have a tag, it is filtered by the gateway and thus not processed by
the MASSIF Platform. In the future, we wish to make the Matching Service more

16 https://www.ibcn.intec.ugent.be/



The MASSIF Plaform 35

intelligent by incorporating machine learning and text analysis algorithms that al-
low to automatically process the incoming data and choose the most appropriate
Context Adapter. As such, the platform would be able to handle data that is not
tagged.

6 Conclusions & Future Work

The number of connected devices will know a rapid increase due to the rising
popularity of the IoT. The need to capture, transform and process the produced
data by these devices grows. Moreover, the number of services processing the
produced data will also increase.

In this paper, the MASSIF platform is presented. It allows semantic annota-
tion of IoT data and the high-level coordination between semantic IoT-services.
The platform is fully data-driven and by representing the data semantically, Ser-

vices can indicate their input data on an abstract level. Each Service can process
the received data and share its gained knowledge with other Services through the
use of the Semantic Communication Bus. This allows the creation of data-driven
workflows that can fulfill complex reasoning chains. By defining their input data,
Services operate on a subset of the available data, achieving more efficient reason-
ing. The applicability of the platform has been shown by presenting two concrete
use cases: an eHomeCare case and a media case. The platform has also been thor-
oughly evaluated by means of the same two use cases. These use cases demonstrate
the performance of the platform. Furthermore, they indicate that the platform can
be extended to cope with additional data producers and new Services to provide
extra processing capabilities.

In our future work, stream reasoning techniques will be incorporated for the
efficient processing of data streams for less complex reasoning scenarios. To be able
to annotate unknown sensor data, machine learning techniques will be investigated
enabling the platform to learn how to annotate unknown data. Furthermore, load
balancing techniques and automated duplication of the Services will be investigated
to provide a truly scalable system.

Acknowledgment

OCCS was partly funded by iMinds and the IWT project nr. 110113. It involves
Boone, Familiehulp Gent, Telecom-IT, Televic Healthcare and TP Vision.

R.A.M.P. was partly funded by iMinds and involves Media Innovatie Centrum,
Small Town Heroes, Televic Conference and Vlaamse Media Maatschappij.

References

1. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a
Better Understanding of Context and Context-Awareness. In: Handheld and ubiquitous
computing, pp. 304–307. Springer (1999)

2. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of
Things: A Survey on Enabling Technologies, Protocols, and Applications. Communications
Surveys & Tutorials, IEEE 17(4), 2347–2376 (2015)



36 Pieter Bonte et al.

3. Al-Jadir, L., Parent, C., Spaccapietra, S.: Reasoning with large ontologies stored in rela-
tional databases: The OntoMinD approach. Data & Knowledge Engineering 69, 1158–1180
(2010)

4. Ali, M.I., Ono, N., Kaysar, M., Griffin, K., Mileo, A.: A Semantic Processing Framework
for IoT-Enabled Communication Systems. In: The Semantic Web-ISWC 2015, pp. 241–
258. Springer (2015)

5. Alshareef, H., Grigoras, D.: First responder help facilitated by the mobile cloud. In: Cloud
Technologies and Applications (CloudTech), 2015 International Conference on, pp. 1–8.
IEEE (2015)

6. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A Survey. Comput. Netw. 54,
2787–2805 (2010)

7. Baralis, E., Cagliero, L., Cerquitelli, T., Garza, P., Marchetti, M.: CAS-Mine: providing
personalized services in context-aware applications by means of generalized rules. KAIS
28(2), 283–310 (2011)

8. Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the Internet of Things:
Early Progress and Back to the Future. Int. J. Semant. Web Inf. Syst. 8, 1–21 (2012)

9. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference. Tech. rep., W3C,
http://www.w3.org/TR/owl-ref/ (2004)

10. Bergamaschi, S., Castano, S., Vincini, M., Beneventano, D.: Semantic Integration of Het-
erogeneous Information Sources Using a Knowledge-Based System. Data & Knowledge
Engineering 36, 215–249 (2001)

11. Bonte, P., Ongenae, F., Schaballie, J., De Meester, B., Arndt, D., Dereuddre, W., Bhatti,
J., Verstichel, S., Verborgh, R., Van de Walle, R., et al.: Evaluation and Optimized Usage
of OWL 2 Reasoners in an Event-based eHealth Context. In: OWL Reasoner Evaluation
Workshop, vol. 4. CEUR (2015)

12. Byun, H.E., Cheverst, K.: Utilizing Context History To Provide Dynamic Adaptations.
Appl. Artif. Intell. 18, 533–548 (2004)

13. Calbimonte, J.P., Sarni, S., Eberle, J., Aberer, K.: XGSN: An Open-source Semantic
Sensing. Middleware for the Web of Things. . Terra Cognita and Semantic Sensor Networks
p. 51 (2014)

14. Card, S.K., Robertson, G.G., Mackinlay, J.D.: The Information Visualizer, an Information
Workspace. In: Proceedings of the SIGCHI Conference on Human factors in computing
systems, pp. 181–186. ACM (1991)

15. Compton, M., Barnaghi, P., Bermudez, L., GarćıA-Castro, R., Corcho, O., Cox, S., Gray-
beal, J., Hauswirth, M., Henson, C., Herzog, A., et al.: The SSN Ontology of the W3C
Semantic Sensor Network Incubator Group. Web Semantics: Science, Services and Agents
on the World Wide Web 17, 25–32 (2012)

16. Crockford, D.: The Application/JSON Media Type For Javascript Object Notation
(JSON). Internet informational RFC 4627 (2006)

17. De, S., Elsaleh, T., Barnaghi, P., Meissner, S.: An Internet of Things Platform for Real-
World and Digital Objects. Scalable Computing: Practice and Experience 13(1), 45–58
(2012)

18. De Backere, F., Ongenae, F., Vannieuwenborg, F., Ooteghem, J.V., Duysburgh, P., Jansen,
A., Hoebeke, J., Wuyts, K., Rossey, J., Van den Abeele, F., et al.: The OCareCloudS
project: Toward organizing care through trusted cloud services. Informatics for Health
and Social Care (0), 1–19 (2014)

19. Dey, A.K., Abowd, G.D., Salber, D.: A Conceptual Framework and a Toolkit for Support-
ing the Rapid Prototyping of Context-Aware Applications. Comput.-Hum. Interact. 16,
97–166 (2001)

20. Ensan, F., Du, W.: A knowledge encapsulation approach to ontology modularization. KAIS
26(2), 249–283 (2011)

21. Famaey, J., Latré, S., Strassner, J., De Turck, F.: An Ontology-Driven Semantic Bus for
Autonomic Communication Elements. In: Lecture Notes in Comput. Sci., vol. 6473, pp.
37–50. Springer Verlag Berlin (2010)

22. Forkan, A., Khalil, I., Tari, Z.: CoCaMAAL: A cloud-oriented context-aware middleware
in ambient assisted living. Future Generation Computer Systems 35, 114–127 (2014)

23. Gray, A.J., Garćıa-Castro, R., Kyzirakos, K., Karpathiotakis, M., Calbimonte, J.P., Page,
K., Sadler, J., Frazer, A., Galpin, I., Fernandes, A.A., et al.: A Semantically Enabled
Service Architecture for Mashups over Streaming and Stored Data. In: The Semanic Web:
Research and Applications, pp. 300–314. Springer (2011)



The MASSIF Plaform 37

24. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowl. Ac-
quis. 5, 199–220 (1993)

25. Haarslev, V., Hidde, K., Möller, R., Wessel, M.: The RacerPro Knowledge Representation
and Reasoning System. Semantic Web 3, 267–277 (2012)

26. Hogan, A., Harth, A., Polleres, A.: Saor: Authoritative reasoning for the web. In: The
Semantic Web, pp. 76–90. Springer Berlin Heidelberg (2008)

27. Horridge, M., Bechhofer, S.: The OWL API: A Java API For OWL Ontologies. Semantic
Web 2, 11–21 (2011)

28. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML. Tech. rep., World Wide
Web Consortium (2004)

29. Huertas Celdran, A., Clemente, G., Felix, J., Gil Perez, M., Martinez Perez, G.: SeCoMan:
A semantic-aware policy framework for developing privacy-preserving and context-aware
smart applications (2013)

30. Hustadt, U., Motik, B., Sattler, U.: Data Complexity of Reasoning in Very Expressive
Description Logics. IJCAI International Joint Conference on Artificial Intelligence pp.
466–471 (2005)

31. Indra: IoT Interoperability Platform with a Big Data approach (2016). URL sofia2.com

32. Kang, J., Park, S.: Context-Aware Services Framework Based on Semantic Web Services
for Automatic Discovery and Integration of Context. International Journal of Advance-
ments in Computing Technology 5(4) (2013)

33. Kostelnik, P., Sarnovsk, M., Furdik, K.: The semantic middleware for networked embedded
systems applied in the Internet of Things and Services domain. Scalable Computing:
Practice and Experience 12(3), 307–316 (2011)

34. Li, X., Eckert, M., Martinez, J.F., Rubio, G.: Context Aware Middleware Architectures:
Survey and Challenges. Sensors 15(8), 20,570–20,607 (2015)

35. McGuinness, D.L., Van Harmelen, F., et al.: OWL Web Ontology Language Overview.
W3C recommendation 10, 2004 (2004)

36. Mineraud, J., Mazhelis, O., Su, X., Tarkoma, S.: A gap analysis of Internet-of-Things
platforms. arXiv pp. 1–7 (2015)

37. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology
Language Profiles. W3C recommendation 27, 61 (2009)

38. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology
Language: Profiles. W3C recommendation 27, 61 (2009)

39. Nelis, J., Verschueren, T., Verslype, D., Develder, C.: DYAMAND: DYnamic, Adaptive
MAnagement of Networks and Devices. In: Local Computer Networks (LCN), 2012 IEEE
37th Conference on, pp. 192–195. IEEE (2012)

40. Ongenae, F., Bleumers, L., Sulmon, N., Verstraete, M., van Gils, M., Jacobs, A., Zutter,
S.D., Verhoeve, P., Ackaert, A., Turck, F.D.: Participatory Design of a Continuous Care
Ontology - Towards a User-driven Ontology Engineering Methodology. In: KEOD, pp.
81–90. SciTePress (2011)

41. OSGi Alliance: OSGi Service Platform Release 4. http://www.osgi.org/. Accessed 9
September 2015 (2009)

42. Palmisano, I.: JFact DL Reasoner. http://jfact.sourceforge.net/. Accessed 1 July 2015
(2014)

43. Palmisano, I.: Reasoners, OWL API Support, papers about the OWL API.
https://github.com/owlcs/owlapi/wiki/Reasoners,-OWL-API-Support,-papers-about-
the-OWL-API. Accessed 23 April 2015 (2014)

44. Patkos, T., Chrysakis, I., Bikakis, A., Plexousakis, D., Antoniou, G.: A Reasoning Frame-
work for Ambient Intelligence. In: Artificial Intelligence: Theories, Models and Applica-
tions, pp. 213–222. Springer (2010)

45. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context Aware Computing
for The Internet of Things: A Survey. IEEE Commun Surv. Tut. 16, 414–454 (2014)

46. Pinto, H.S., Martins, J.P.: Ontologies: How can They be Built? KAIS 6(4), 441–464 (2004)
47. PrudHommeaux, E., Seaborne, A., et al.: SPARQL Query Language for RDF. W3C

recommendation 15 (2008)
48. Shearer, R., Motik, B., Horrocks, I.: HermiT: A Highly-Efficient OWL Reasoner. In:

OWLED, vol. 432 (2008)
49. Simperl, E.: Reusing ontologies on the Semantic Web: A feasibility study. Data & Knowl-

edge Engineering 68, 905–925 (2009)



38 Pieter Bonte et al.

50. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL
reasoner. Web Semantics: Science, Services and Agents on the World Wide Web 5, 51–53
(2007)

51. Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte, J.P., Riahi, M.,
Aberer, K., Jayaraman, P.P., Zaslavsky, A., Žarko, I.P., et al.: OpenIoT: Open Source
Internet-of-Things in the Cloud. In: Interoperability and Open-Source Solutions for the
Internet of Things, pp. 13–25. Springer (2015)

52. Strang, T., Linnhoff-Popien, C.: A Context Modeling Survey. In: Workshop Proceedings
(2004)

53. Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Description. In:
International Joint Conference on Automated Reasoning, pp. 292–297. Springer-Verlag,
Berlin, Heidelberg (2006)

54. Tsarkov, D., Palmisano, I.: Chainsaw: a Metareasoner for Large Ontologies. In: ORE, vol.
858. CEUR Workshop Proceedings (2012)

55. Wang, F., Hu, L., Zhou, J., Zhao, K.: A Survey from the Perspective of Evolutionary
Process in the Internet of Things. International Journal of Distributed Sensor Networks
2015, 9 (2015)

Author Biographies

Pieter Bonte graduated from Ghent University, Faculty of En-
gineering and Architecture in the summer of 2013. In September,
he joined the Internet Based Communication Networks and Ser-
vices (IBCN) research group of Piet Demeester as a Research En-
gineer and started working on the research of knowledge discovery
and management for IoT services, using semantic technologies. In
September 2014 he started working as a PhD student in the same
department focusing on scalable reasoning solutions for IoT appli-
cations. During his research, he has participated in several interdis-
ciplinary research projects, providing personal and optimized care
for patients both in home as hospital settings.

Femke Ongenae graduated from Ghent University, Faculty of En-
gineering in Summer 2007. A month later she joined the research
group of Piet Demeester, IBCN as a PhD student. On the 1st of
January 2009, she received a PhD grant from the IWT, Institute
for the Support of Innovation through Science and Technology, to
work on the research of knowledge discovery and management for
eHealth applications using ontologies. During this time, she worked
on several eCare projects to improve the continuous care of patients
in institutionalized care settings. She received her PhD in August
2013, and she is currently working as a postdoctoral researcher at
the IBCN research group. She does research in the area of knowl-
edge management and discovery, specifically focusing on the use of
semantic web technologies and ontologies for the optimization of
continuous care and the application of IoT.



The MASSIF Plaform 39

Femke De Backere graduated from Ghent University, Faculty
of Engineering and Architecture in the summer of 2009. In Au-
gust of that year, she joined the Internet Based Communication
Networks and Services (IBCN) research group of Piet Demeester
as a PhD student and started working on the research of knowl-
edge discovery and management for pervasive eHealth and eCare
services, using semantic technologies. During her research, she has
participated in several interdisciplinary research projects focusing
on facilitating independent living at home for elderly and individu-
als with chronic diseases. She obtained her PhD in June 2016 and
will continue working on these topics, while also researching how
semantic technologies can be used in institutional care.

Jeroen Schaballie graduated from KaHo Sint-Lieven high school,
specialization Electronics-ICT in summer 2010. After working two
years in a private company as a Software Engineer, he joined the
research group of Piet Demeester, IBCN as a Research Engineer
and is associated with several projects assisting in network based
projects, web service applications and eCare projects. During the
last two years, he was focusing on how to improve the continuous
care of patients in institutionalized care settings and is currently
working on the use of semantic web technologies and ontologies for
the optimization of continuous care and the application of IoT.

Dörthe Arndt studied Mathematics and Computational Linguis-
tics at the University of Bonn and Polytechnic University of Cat-
alonia in Barcelona. She graduated in 2010. For her Master thesis in
the field of mathematical logic she co-developed the Naproche proof
checker. After that she worked for 2 years as a risk manager in an
international insurance group. Since May 2013, she is a researcher
at Data Science Lab Ghent University iMinds. Her main research
interests are semantic web logics, reasoning and and rule languages,
in particular Notation3 Logic. Her current work mainly focuses on
the formal semantics of Notation3 and its relation to other logics.

Stijn Verstichel graduated magna cum laude at Ghent Univer-
sity in 2005. He joined the research group of Piet Demeester, IBCN
working on two European Projects. Geant2, consists of the develop-
ment and deployment of a new-generation pan-European Research
Network, and corresponding monitoring software. InteGRail focuses
on the development of specific semantic software for the railway in-
dustry. Its aim is to create a holistic, intelligent and integrated
information and data sharing platform for the European Railway
Network. In 2007, he received a PhD grant to work on research in
distributed reasoning techniques for the Semantic Web. He success-
fully defended his PhD, titled “Distributed Reasoning for Context-
Aware Services” in 2011. He is currently still with IBCN-iMinds as a
post-doctoral researcher, performing research on semantics through
a number of iMinds projects. He is author or co-author of more than
30 papers and is a regular reviewer for conferences and journals in
his research field.



40 Pieter Bonte et al.

Erik Mannens is Professor @ Ghent University - Data Science
Lab / Member of the Senior Management Team @ iMinds / Re-
search Manager @ iMinds - Data Science Lab since 2005 where he
has successfully managed +50 projects. He received his PhD degree
in Computer Science Engineering (2011) at UGent, his Masters de-
gree in Computer Science (1995) at K.U. Leuven University, and his
Masters degree in Electro-Mechanical Engineering (1992) at KAHO
Ghent. He heads the Data Science team of +50 Semantic Technolo-
gies & Artificial Intelligence Researchers. The primary objective of
our Data Science Lab team is to advance research and technology
in the sweet spot of the fusion of Semantics & Artificial Intelligence
and to widely apply this research in large-scale use cases. His ma-
jor expertise is centered around metadata modeling, semantic web
technologies, big data analytics, broadcasting workflows, iDTV and
web development in general.

Rik Van de Walle received master and PhD degrees in Engineer-
ing from Ghent University, Belgium in July 1994 and February 1998,
respectively. His PhD was about Magnetic Resonance Imaging, and
was prepared in the context of a close collaboration between the
Department of Radiology and the Department of Electronics and
Information Systems. After a post-doctoral fellowship at the Uni-
versity of Arizona he returned to Ghent, became a full-time Lec-
turer in 2001, and founded the Multimedia Lab at the Faculty of
Engineering and Architecture. This research group is one of the
founding teams of iMinds. In 2016, it became Data Science Lab.
Currently, the Data Science Lab has about 80 members. In 2004
he was appointed Full Professor, and in 2010 he became Senior
Full Professor at Ghent University. His personal research interests
include multimedia content delivery, coding of multimedia data,
metadata technology, content adaptation, interactive (mobile) mul-
timedia applications, and e-health, systems and signals.

Filip De Turck leads the network and service management re-
search group at the Department of Information Technology of the
Ghent University, Belgium and iMinds (Interdisciplinary Research
Institute in Flanders). He (co-) authored over 450 peer reviewed pa-
pers and his research interests include telecommunication network
and service management, efficient big data processing and design of
large-scale Internet of Things systems. In this research area, he is
involved in several research projects with industry and academia,
serves as vice-chair of the IEEE Technical Committee on Network
Operations and Management (CNOM), chair of the Future Internet
Cluster of the European Commission, and is on the TPC of many
network and service management conferences and workshops and
serves in the editorial board of several network and service manage-
ment journals.


