Skip to main content

Advertisement

Log in

Reducing uncertainties in land cover change models using sensitivity analysis

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Land cover change (LCC) models aim to track spatiotemporal changes made in land cover. In most cases, LCC models contain uncertainties in their main components (i.e., input parameters and model structure). These uncertainties propagate through the modeling system, which generates uncertainties in the model outputs. The aim of this manuscript is to propose an approach to reduce uncertainty of LCC prediction models. The main objective of the proposed approach is to apply a sensitivity analysis method, based on belief function theory, to determine parameters and structures that have a high contribution in the variability of the predictions of the LCC model. Our approach is applied to four common LCC models (i.e., DINAMICA, SLEUTH, CA-MARKOV, and LCM). Results show that uncertainty of the model parameters and structure has meaningful impacts on the final decisions of LCC models. Ignoring this uncertainty can lead to erroneous decision about land changes. Therefore, the presented approach is very useful to identify the most relevant uncertainty sources that need to be processed to improve the accuracy of LCC models. The applicability and effectiveness of the proposed approach are demonstrated through a case study based on the Cairo region. Results show that 13% of the agriculture and 3.8% of the desert lands in 2014 would be converted to urban areas in 2025.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. www.usgs.gov.

References

  1. Sklar FH, Costanza R (1991) The development of dynamic spatial models for landscape ecology: a review and prognosis. Quantitative methods in landscape ecology. Springer, New York, pp 239–288

    Google Scholar 

  2. Xu X, Du Z, Zhang H (2016) Integrating the system dynamic and cellular automata models to predict land use and land cover change. Int J Appl Earth Obs Geoinf 52:568–579

    Article  Google Scholar 

  3. Hu Z, Lo C (2007) Modeling urban growth in Atlanta using logistic regression. Comput Environ Urban Syst 31(6):667–688

    Article  Google Scholar 

  4. Zhang R, Tang C, Ma S, Yuan H, Gao L, Fan W (2011) Using Markov chains to analyze changes in wetland trends in arid Yinchuan plain, China. Math Comput Model 54:924–930

    Article  Google Scholar 

  5. Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93(2):314–337

    Article  Google Scholar 

  6. Huang B, Xie C, Tay R (2010) Support vector machines for urban growth modelling. Geoinformatica 14(1):83–99

    Article  Google Scholar 

  7. Boulila W, Ettabaa KS, Farah IR, Solaiman B, Ghzala HB (2009) Towards a multi-approach system for uncertain spatio-temporal knowledge discovery in satellite imagery. ICGST Int J Graph Vis Image Process (GVIP) 9(6):19–25

    Google Scholar 

  8. Boulila W, Farah IR, Solaiman B, Ghzala HB (2011) Interesting spatiotemporal rules discovery: application to remotely sensed image databases. VINE J Inf Knowl Manag Syst 41(2):167–191

    Google Scholar 

  9. Boulila W, Farah IR, Ettabaa KS, Solaiman B, Ben Ghzala H (2011) A data mining based approach to predict Spatio-temporal changes in satellite images. Int J Appl Earth Observ Geoinform 13(3):386–395

    Article  Google Scholar 

  10. Razavi BS (2014) Predicting the trend of land use changes using artificial neural network and Markov chain model (Case Study: Kermanshah City). Res J Environ Earth Sci 6(4):215–226

    Google Scholar 

  11. De Souza FJ, Velloso MLF, Fonseca OLH (2002) Change-detection of land cover using fuzzy sets and remotely sensed data. IEEE Int Geosci Remote Sens Symp 6:3381–3383

    Article  Google Scholar 

  12. Ferchichi A, Boulila W, Farah IR (2016) Propagating aleatory and epistemic uncertainty in land cover change prediction process. Ecol Inform 37:24–37

    Article  Google Scholar 

  13. Fordham DA, Haythorne S, Brook BW (2016) Sensitivity analysis of range dynamics models (SARDM): quantifying the influence of parameter uncertainty on forecasts of extinction risk from global change. Environ Model Softw 83:193–197

    Article  Google Scholar 

  14. Foody GM (2003) Uncertainty, knowledge discovery and data mining in GIS. Prog Phys Geogr 27(1):113–121

    Article  Google Scholar 

  15. Aerts JCJH, Goodchild MF, Heuvelink GBM (2003) Accounting for spatial uncertainty in optimization with spatial decision support systems. Trans GIS 7(2):211–230

    Article  Google Scholar 

  16. Verstegen JA (2016) Quantifying and reducing uncertainty in land use change model projections : Case studies on the implications of increasing bioenergy demands. Thesis, Utrecht University

  17. Hoffman FO, Hammonds JS (1994) Propagation of uncertainty in risk assessment: the need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. Risk Anal 14(5):707–712

    Article  Google Scholar 

  18. Al-sharif AAA, Pradhan B (2015) Spatio-temporal prediction of urban expansion using bivariate statistical models: assessment of the efficacy of evidential belief functions and frequency ratio models. Appl Spatial Anal Policy 9:213–231

    Article  Google Scholar 

  19. Ferchichi A, Boulila W, Farah IR (2016) Towards an uncertainty reduction framework for land-cover change prediction using possibility theory. Vietnam J Comput Sci 4:195–209

    Article  Google Scholar 

  20. Jebur MN, Pradhan B, Tehrany MS (2015) Manifestation of LiDAR-derived parameters in the spatial prediction of landslides using novel ensemble evidential belief functions and support vector machine models in GIS. IEEE J Sel Top Appl Earth Observ Remote Sens 8(2):674–690

    Article  Google Scholar 

  21. Liu Z, Dezert J, Mercier G, Pan Q (2012) Dynamic evidential reasoning for change detection in remote sensing images. IEEE Trans Geosci Remote Sens 50(5):1955–1967

    Article  Google Scholar 

  22. Kruger C, Lakes T (2015) Bayesian belief networks as a versatile method for assessing uncertainty in land-change modeling. Int J Geogr Inf Sci 29(1):111–131

    Article  Google Scholar 

  23. Tayyebi AH, Tayyebi A, Khanna N (2014) Assessing uncertainty dimensions in land-use change models: using swap and multiplicative error models for injecting attribute and positional errors in spatial data. Int J Remote Sens 35(1):149–170

    Article  Google Scholar 

  24. van der Kwast J, Poelmans L, Van de Voorde T, de Jong K, Uljee I, Karssenberg D, Canters F, Engelen G (2012) Uncertainty analysis and data-assimilation of remote sensing data for the calibration of cellular automata based land-use models. In: International environmental modelling and software society, pp 997–1004

  25. Verburg PH, Tabeau A, Hatna E (2013) Assessing spatial uncertainties of land allocation using a scenario approach and sensitivity analysis: a study for land use in Europe. J Environ Manag 127:S132–S144

    Article  Google Scholar 

  26. Mondal MS, Garg PK, Sharma N, Kappas M (2015) Cellular automata (CA) markov modeling of LULC change and sensitivity analysis to identify sensitive parameter(s). In: Proceedings of the 27th international cartographic conference, vol 38 (818)

  27. Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models. Joint Research Centre of the European Commission, Ispra, Italy

  28. Pianosi F, Beven K, Freer J, Hall JW, Rougier J, Stephenson DB, Wagener T (2016) Sensitivity analysis of environmental models: a systematic review with practical workflow. Environ Model Softw 79:214–232

    Article  Google Scholar 

  29. Sánchez-Canales M, Benito AL, Passuello A, Terrado M, Ziv G, Acuña V, Schuhmacher M, Elorza FJ (2012) Sensitivity analysis of ecosystem service valuation in a Mediterranean watershed. Sci Total Environ 440:140–153

    Article  Google Scholar 

  30. Bettemier ÖH (2010) Error estimation of orthorectification of small satellite images by differential sensitivity analysis. J Aeronaut Space Technol 4(4):65–74

    Google Scholar 

  31. Haihua X, Xianchuan Y, Dan H, Sha D (2015) Sensititvity analysis of hierchical hybrid fuzzy-neural network. Int J Smart Sens Intell Syst 8(3):1837–1854

    Google Scholar 

  32. Zielinskaa AL, Sunb L (2010) Applying time-dependent variance-based global sensitivity analysis to represent the dynamics of an agent-based model of land use change. Int J Geogr Inf Sci 24(12):1829–1850

    Article  Google Scholar 

  33. Helton JC, Johnson JD, Sallaberry CJ, Storlie CB (2006) Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab Eng Syst Saf 91(10–11):1175–1209

    Article  Google Scholar 

  34. Li C, Wang W, Xiong J, Chen P (2014) Sensitivity analysis for urban drainage modeling using mutual information. Entropy 16:5738–5752

    Article  Google Scholar 

  35. Wei H, Hua Y (2013) EFAST method for global sensitivity analysis of remote sensing models parameters. Remote Sens Technol Appl 28(5):836–843

    Google Scholar 

  36. Xiao Y, Zhao W, Zhou D, Gong H (2013) Sensitivity analysis of vegetation reflectance to biochemical and biophysical variables at leaf, canopy, and regional scales. IEEE Trans Geosci Remote Sens 52:1–11

    Google Scholar 

  37. Homma T, Saltelli A (1996) Importance measures in global sensitivity analysis of nonlinear models. Reliab Eng Syst Saf 52(1):1–17

    Article  Google Scholar 

  38. Song X, Bryan BA, Paul KI, Zhao G (2012) Variance-based sensitivity analysis for a forest growth model. Ecol Model 247:135–143

    Article  Google Scholar 

  39. Gerardino-Neira C, Goodman J, Velez-Reyes M, Rivera W (2008) Sensitivity analysis of a hyperspectral inversion model for remote sensing of shallow coastal ecosystems. IGARSS I-98–I-101

  40. Ferson S, Tucker WT (2006) Sensitivity analysis using probability bounding. Reliab Eng Syst Saf 91(1011):1435–1442

    Article  Google Scholar 

  41. Sengupta A, Pal TK (2000) Theory and methodology: on comparing interval numbers. Eur J Oper Res 127:28–43

    Article  MATH  Google Scholar 

  42. Ali T, Boruah H, Dutta P (2012) Sensitivity analysis in radiological risk assessment using probability bounds analysis. Int J Comput Appl 44(17):1–5

    Google Scholar 

  43. Hall JW (2006) Uncertainty-based sensitivity indices for imprecise probability distributions. Reliab Eng Syst Saf 91(101):1443–1451

    Article  Google Scholar 

  44. Helton J, Johnson J, Oberkampf W, Sallaberry C (2006) Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty. Reliab Eng Syst Saf 91:1414–1434

    Article  Google Scholar 

  45. Oberguggenberger M, King J, Schmelzer B (2009) Classical and imprecise probability methods for sensitivity analysis in engineering: a case study. Int J Approx Reason 50:680–693

    Article  Google Scholar 

  46. Ferson S, Tucker WT (2006) Sensitivity in risk analysis with uncertain numbers. Technical Report SAND2006-2801, Sandia National Laboratories, Albuquerque, NM

  47. Mas JF, Kolb M, Paegelow M, Olmedo MTC, Houet T (2014) Inductive pattern-based land use/cover change models: a comparison of four software packages. Environ Model Softw 51:94–111

    Article  Google Scholar 

  48. Pontius GR, Malanson J (2005) Comparison of the structure and accuracy of two land change models. Int J Geogr Inf Sci 19(2):243–265

    Article  Google Scholar 

  49. Sutton K, Fahmi W (2001) Cairo’s urban growth and strategic master plans in the light of Egypt’s 1996 population census results. Cities 18(3):135–149

    Article  Google Scholar 

  50. De Almeida CM, Monteiro AMV, Cmara G, Cerqueira GC, Pennachin CL, Batty M (2005) GIS and remote sensing as tools for the simulation of urban land-use change. Int J Remote Sens 26(4):759–774

    Article  Google Scholar 

  51. Filho BSS, Filho LC, Cerqueira GC, Araujo WL (2003) Simulating the spatial patterns of change through the use of the DINAMICA model, Anais XI SBSR, Belo Horizonte, Brasil, 05–10 April, INPE, pp 721–728

  52. Soares-Filho BS, Cerqueira GC, Pennachin CL (2002) DINAMICAa stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol Model 154:217–235

    Article  Google Scholar 

  53. Bihamt N, Soffianian A, Fakheran S, Gholamalifard M (2015) Using the SLEUTH urban growth model to simulate future urban expansion of the Isfahan Metropolitan Area, Iran. J Indian Soc Remote Sens 43(2):407–414

    Article  Google Scholar 

  54. Hua L, Tang L, Cui S, Yin K (2014) Simulating urban growth using the Sleuth Model in a coastal peri-urban district in China. Sustainability 6(6):3899–3914

    Article  Google Scholar 

  55. Jantz CA, Goetz SJ, Donato D, Claggett P (2010) Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model. Comput Environ Urban Syst 34:1–16

    Article  Google Scholar 

  56. Arsanjani JJ, Kainz W, Mousivand AJ (2011) Tracking dynamic land-use change using spatially explicit Markov Chain based on cellular automata: the case of Tehran. Int J Image Data Fusion 2:329–345

    Article  Google Scholar 

  57. Gong W, Li Y, Fan W, Stott P (2015) Analysis and simulation of land use spatial pattern in Harbin prefecture based on trajectories and cellular automata-Markov modelling. Int J Appl Earth Obs Geoinf 34:207–216

    Article  Google Scholar 

  58. Abuelaish B, Olmedo MTC (2016) Scenario of land use and land cover change in the Gaza strip using remote sensing and GIS models. Arab J Geosci 9:274–288

    Article  Google Scholar 

  59. Mishra VN, Rai PK, Mohan K (2014) Prediction of land use changes based on land change modeler (LCM) using remote sensing: a case study of Muzaffarpur (Bihar), India. J Geogr Inst Cvijic 64(1):111–127

    Article  Google Scholar 

  60. Tewolde MG, Cabral P (2011) Urban sprawl analysis and modelling in Asmara, Eritrea. Remote Sens 3:2148–2165

    Article  Google Scholar 

  61. Dempster AP (1967) Upper and lower probabilities induced by a multivalued mapping. Ann Math Stat 38:325–339

    Article  MathSciNet  MATH  Google Scholar 

  62. Shafer GA (1976) Mathematical theory of evidence. Princeton University Press, Princeton

    MATH  Google Scholar 

  63. Balch MS (2012) Mathematical foundations for a theory of confidence structures. Int J Approx Reason 53(7):1003–1019

    Article  MathSciNet  MATH  Google Scholar 

  64. Bain L, Engelhardt M (1991) Introduction to probability and mathematical statistic, 2nd edn. Duxbury, Pacific Grove

    MATH  Google Scholar 

  65. Ferson S, Kreinovich V, Ginzburg L, Myers D, Sentz K (2003) Constructing probability boxes and DempsterShafer structures, Technical report, Sandia National Laboratories

  66. Miller LH (1956) Table of percentage points of Kolmogorov statistics. J Am Stat Assoc 51:111121

    Google Scholar 

  67. Lilliefors H (1967) On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J Am Stat Assoc 62:399402

    Article  Google Scholar 

  68. El-Sadek A, Irvem A (2014) Evaluating the impact of land use uncertainty on the simulated streamflow and sediment yield of the Seyhan River basin using the SWAT model. Turk J Agric For 38:515–530

    Article  Google Scholar 

  69. Nigussie TA, Altunkaynak A (2016) Assessing the hydrological response of Ayamama watershed from urbanization predicted under various landuse policy scenarios. Water Resour Manag 30:3427–3441

    Article  Google Scholar 

  70. R Development Core Team (2012) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahlem Ferchichi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferchichi, A., Boulila, W. & Farah, I.R. Reducing uncertainties in land cover change models using sensitivity analysis. Knowl Inf Syst 55, 719–740 (2018). https://doi.org/10.1007/s10115-017-1102-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-017-1102-9

Keywords

Navigation