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ABSTRACT Foursquare, Pinterest, among others) must refrain fromoraty
sampling too many nodes and all together avoid samplingssdge
either due to caching inefficiencies or limitations in thel AR
practice, most online social networks (OSNs), includingsthwe
present in this study, do not provide random sampling pivest
Practitioners perform random sampling by guessing useirlfre
user ID space, which, if sparsely populated, imposes a lauge
ber of query misses until a valid user is found. In this coftex
techniques that heavily rely on random sampling, such agijsa
et al. [4], suffers from low query rate. Dasgupta et al. dlsti
compensates the low query rate through the use of neighbdrho
information present in the node query reply of a number of ma-
jor OSNs (e.g. Foursquare, Pinterest, Sina microblog).il&ily
graph streaming techniques, such as Ahmed etlal. [3], anenals
well adapted to this environment as they require visitingdges,
which is prohibitively expensive in a large network with hahs
or even billions of edges.

Recently, great focus has been placed on developing tagksiq
that use specially constructedrawlers’ to query the network and
to provide asymptotically unbiased estimates of a handfulet-
work characteristics [10, 27]. Chief among these techricpre
random walks, which provide provable accuracy and converge
guarantees (see Ribeiro and Towsley [28] and Avrechenkal [&]).
Random walks present a number of desirable properties that a
useful to characterize large networks; (1) they requiteegifew or
1. INTRODUCTION no independently sampled nodes and produce asymptotiastly

The literature on sampling large networks is vast and richr- vV @sed estimates and accuracy guarantees under mild cosdito
jous techniques have been proposed for subgraph samplihg an & large family of directé@land undirected networks, even when the

Characterizing large online social networks (OSNs) thtongde
querying is a challenging task. OSNSs often impose severe con
straints on the query rate, hence limiting the sample sizesimall
fraction of the total network. Various ad-hoc subgraph damgp
methods have been proposed, but many of them give biased esti
mates and no theoretical basis on the accuracy. In this week,
focus on developing sampling methods for OSNs where qugryin
a node also reveals partial structural information abauhéigh-
bors. Our methods are optimized for NoSQL graph databages (i
the database can be accessed directly), or utilize Web A&l av
able on most major OSNs for graph sampling. We show that our
sampling method has provable convergence guarantees ng bei
an unbiased estimator, and it is more accurate than cunstsf-
the-art methods. We characterize metrics such as nodedebsity
estimation and edge label density estimation, two of thet fiuws
damental network characteristics from which other netwairér-
acteristics can be derived. We evaluate our methods ofistloser
several live networks using their native APIs. Our simalatstud-

ies over a variety of offline datasets show that by includiemgh-
borhood information, our method drastically (4-fold) reds the
number of samples required to achieve the same estimattn ac
racy of state-of-the-art methods.

characterization of large networks [12][7, 21] (refer taviid et~ network has multiple disconnected components, as long e so
al. [3] for a good survey). These techniques, however, dtiek limited amount of random sampling is available{[4,27, 28), {se
provable guarantees. This means that after sampling adnaat crawling to collect samples (which effectively implemeittgor-

a large network, one has no guarantees whether the metrics ob tance sampling on node degrees), and can achieve relakigty
tained are to be trusted. Fortunately, researchers haemthec ~ query rates on NoSQL graph databases or using Web APIs, find (3
made a push towards network characterization through sagnpl ~ does not require any advance knowledge of the network, siith a

with provable properties and accuracy guarantees. size or topology. However, existing random walk (RW) tecjueis
Techniques adapted to sample networks stored at NoSQL graphdo not take advantage of the extra neighborhood informatien
databases or accessible from Web APIs (e.g. available @bbak, spite the fact that neighborhood information is readilyilatde in

many OSNs at (practically) no sampling cost (obtained from t
node query reply). Including such extra information in R@ésbd
estimator while retaining unbiased guarantees is chatlgrdye to
different types of biases involved in the sampling process.
Permission to make digital or hard copies of all or part o tvork for
personal or classroom use is granted without fee providatdbpies are Contributions: In this work, we consider the generalization of RW

not made or distributed for profit or commercial advantage that copies sampling and combine current state-of-the-art estimatarlude
bear this notice and the full citation on the first page. Toyootherwise, to

republish, to post on servers or to redistribute to listguies prior specific " - . . .
permission and/or a fee. In directed networks where querying a node retrieves bailirth
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neighborhood information. Our estimator drastically ek (by
4-fold) the number of samples required to achieve the satimaas
tion accuracy. Examples of OSNs that provide neighborhofut-i
mation are found everywhere, e.g. Pinterest [24], Foursqg[8],
Sina microblog([3R], and Xiami [35]. Our generalizationoals us
to include neighboring information in the estimation of aiety of
network characteristics from nodes sampled using a randalk w
based technique called Frontier Sampling [27]. We alsoémgint
our method to sample networks in the wild, and discover that t
degree distribution of Foursquadlees noexhibit a heavy tail, and,
by using adapted versions of state-of-the-art algorithmslso es-
timate that the average distance between users to be 5.8 vghi
between values of average distances observed for TwittEr #4d
MSN messenger network (6.6) [16)18].

This paper is organized as follows. Several basic sampicig-t
niques are summarized in Sectldn 2. In Sectidns 3, we présent
methodology of using neighborhoold information to estienabde
label density. In Sectiori] 4, we propose methods using neighb
hood information to estimate edge label density. The perémce
evaluation and testing results are presented in SectiorctidB[3
presents applications of our methods on Foursquare andrBst
websites. Sectioh] 9 summarizes related work. Seétidn 10 con
cludes.

2. PRELIMINARIES

In this section we introducErontier Sampling(FS), a general-
ization of random walk sampling methods [27]. For ease of pre
sentation, we assume undirected, connected, and nortitapeet-
works. Unless we state otherwise, denote(ay = (V, Eq) the
directed graph under study, agi= (V, E) the undirected graph
generated by ignoring the direction of edge&in

The above assumptions are not too restrictive for the fatigw
reasons: Fadirected networksour method can be trivially adapted
to include directed OSNSs such as Twitter and Flickr, whiahvjire

direct Web API access to the incoming and outgoing edges of a

node (such that our crawler can traverse on an undirectesiover
of the network). Sometimes, there is a cost associated \bitiro

ing the incoming and outgoing edges of nodes with large inubr o
degrees (e.qg., Flickr provides only up to one hundred inogror
outgoing edges per query). Foonnected network®ur previous
work [4] consider random walk sampling and show how to augmen
disconnected graphs using randomly sampled nodes intecteth
graphs without changing the properties of the estimatoose that
PageRank-style jumps are not suited for the task as thejeanea
known biases in the estimators, see [4]. A trivial adaptatibthe
above argument can be used to show that FS retains its gespert
on disconnected or bipartite networks if a limited amountanf-
dom sampling is available (e.g. one hundred sampled nodas in
network with millions of nodes).

Our accuracy guarantees follow directly from our resulRiipeiro
and Towsley([2B], which provides provable guarantees omtban
squared error (MSE) accuracy of the degree distributiomests
given by random walk sampling as a function of the number of
samples and the first nontrivial eigenvalue of the Laplaoia®.

2.1 Frontier Sampling (FS)

Frontier Sampling [27] is a fully distributed sampling afijbm
that performsn independent RWs of. If m = 1, FS behaves
exactly like a RW. Whenn > 1, compared to a single RW, FS
can be more robust to the problems that arise from the waliter g
ting trapped at a loosely connected componentofThe k-th FS
walker starts at nodef)k), k = 1,...,m. Each FS walker has a
predefined budgét’ (we explain how! is chosen at the end of this

section). Denote by (u) the set of neighbors of any nodec V,
and byd, = |N(u)| the degree ofi. At each step an FS walker
at nodeu moves to a randomly node froM(u), deducting from
the budgetl” a random quantityX ~ Exp(d.), an exponentially
distributed random variable with meapd.,. FS stops whefi’ be-
comes negative. If7 is a connected and non-bipartite graph, the
probability that a node is sampled by FS converges to the follow-
ing distribution

ﬂ_FS _ dv

v 2|E| )

FS can also be used to sample edges randomly, as the prgbabili
of traversing an edgéu,v) € E converges to the uniform distri-
bution [27], that is

veV.

1
B
The choice of budget is often defined as the average number
of nodes that one wishes to sampte,divided by the number of
FS walkersm times the average degre, In practice, one does
not need to knowl asT may be increased dynamically on-the-fly.
Because we can adjugt on-the-fly, in what follows we take the
liberty to assume that FS samples exactlyodes.

We merge alh samples collected by the FS walkers into a single
stream(su, ..., s,) in any order. Lets; be thei-th node sampled
by FS,i > 1. Let “a.s.” denote “almost sure” convergence, i.e.,
that the event of interest happens with probability one.nThe

LEMMA 1 (THEOREMA4.1 [27]). For any functionp(v) : V —
R, where}_,, .\ #(v) < oo,

1y
Jim 5 2 9(s)

An important property of FS is that seeding > 1 walkers with
i.i.d. nodes sampled uniformly at random (UNI) is equivalen
initializing walkers in steady state [27, Theorem 5.4]. hagiice,
m = 100 initial UNI samples nodegs'", .. ., s{!°”), are enough

to initialize the FS walkers close to their joint steadysf@hus, re-
quiring only 100 “expensive” UNI sampled nodes). This pmpe

of FS, sampling nodes according to their degree but beiriglini
ized in steady state using UNI, is the result of a Markov cliaak

used to uniformize continuous time Markov chains into diter
transition probability matrices. For more details see Riband
Towsley [27].

In practice FS also works on disconnected graph as long as the
initial choice of nodes is chosen from UNI and is large. How-
ever, for disconnected graphs no convergence propertyesindwn
as the different FS walkers do not mix. In the absence of UNI
samples, FS behaves much like a single RW and it is adviseéd tha
m should be kept reasonably small. Recent results in Ribeido a
Towsley [28] show provable guarantees of accuracy of RVédas
methods:

LEMMA 2 (THEOREMIII.1[28]). Letws,...,w, be a set
of nodes sampled independently proportionally to theirelegand
s1,- .-, 8n IS @ sequence of RW sampled nodes, then

1 < 1 1«
— . < - — .
MSE<n ;gb(sl)) <1 aMSE<n ;¢(wz)> , Vk, (1)
whereq is the first nontrivial eigenvalue of the Laplaciafy, of G.
The bound is tight [28].

The bound in Lemm@l 2 shows that the increase in MSE of RW (FS
with m = 1) sampling is at most/(1 — «) times larger than the

Puv = (U,’U) € FE.
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MSE of independently sampling nodes according to their ekegr
(importance sampling proportional to the degree). Theevali
goes to zero as the graph gets more connected, reducing gthe ga
between MSEs of RW and i.i.d. importance sampling.

The value ofx can also be “artificially” decreased using the RW
with restarts (RWRST] [4], which augments the graph withesxdg
of small weights. RWRSTSs are not to be confused with PageR-
ank [23] as the two Markov chains have remarkably differeat s
tistical properties. Moreover, empirically FS achievasikir fast
mixing if seed nodes are chosen uniformly (UNI) angs> m [27].

Not surprisingly, FS behavior is remarkably similar to RWR&
RWRST is a RW that at node € V chooses to jump to a ran-
domly chosen node with probability/(d., + k) or select a neigh-
bor of v with probabilityd/(d., + k), whereh > 0 is a parameter
of the algorithm. A RWRST stopped at the + 1 restart can be
emulated bym independent RWs that at nodec V' stop with
probability h/(d., + h). Using results in Avrachenkov et al.|[4,
Theorem 2.1] it is easy to show that the MSE of a RWRST over
a d-regular bounded by multiplying the right hand side[df (1) by
(1 —a)/(1 — ad/(d + h))[| Moreover, for any fixed number of
sampled nodes, the value of: is a random variable that increases
with m, implying that the latter MSE bound should decrease with
m. While this result is particular ta-regular graphs, these are
likely to hold for a large class of graphs. The similarityweéen

FS and then simulated RWRST indicates that the FS MSE likely
decreases withn, as long asn < n and FS seed nodes are UNI
sampled. Unfortunately, a formal proof eluded us, as airagythe

FS Markov chain is more challenging than the analysis of RWRS
in Avrachenkov et al[[4] . We leave this analysis as futurekwo

3. NODE LABEL DENSITY ESTIMATION

In what follows we propose methods for estimating node label
density. DefineL(v) to be the node label of nodeunder study,
with rangeL = {l1,...,ix}. Denote byd = (61,...,0x) the
node label density, whet, (1 < k& < K) is the fraction of nodes
with labeli,. For example, wheil(v) is defined as the degree of
nodewv, then@ is the node degree distribution 6f If L(v) denote
the gender of node (or user) then@ is the gender distribution of
the OSN under study.

3.1 Simple Estimators of Node Densities

To estimated based on sampled nodgs; }:=1,...,», the sta-
tionary distribution of sampling methods (e.g. UNI, RW, &)
7 = (m, : v € V) is needed to correct the bias induced by the
underlying sampling method. Fer € V, we haver, = “1/‘
for UNI, andm, = 2\E\
and|E| are usually unknown, unbiasing the error is not straightfor
ward. Instead, one may use a non-normalized stationamitudist
tion 7 = (7, : v € V) to reweight sampled nodes (1 < i < n),
wheret, is computed as

{

Let 1(P) be the indicator function that equals one when predicate
P is true, and zero otherwisé, is estimated as follows

) =1
oy M=

fNote that in ad-regular graph one should think thatis a mean-
ingful density function over the nodes, as estimating thgree
distribution on a graph that only has degrkis meaningless.

1
dy

Ty X

for UNI,

for RW and FS @

1<k<K, 3

k

whereC = 3" | #;.'. Ribeiro and Towsley [27] shows théy,
(1 < k < K) is an asymptotically unbiased estimatedpf

3.2 Estimators Using Neighborhood Informa-
tion of Sampled Nodes

When the degrees and the node labels of sampled nodes’ neigh-
bors are available, we propose the following estimatoizinid this
free neighborhood information

_ lk)

Z v 1 , 1<k<K, (4
i=1 weN (s;) 7T“‘1 w
whereC' = Y7, D weN (s, #5,'dy,"'. The above estimator is

similar to one proposed in I%asgupta et al. [7]. However the es
mator in Dasgupta et al.][7] requir¢® | to be known in advance,
which is usually not available. Moreover, Dasgupta et[gl.f¢7
cuses on designing independent node sampling methodd(&lg.
independent weighted node sampling), which we argued has a |
query rate. Whereas we focus on crawling methods such as BW an
FS. For each node € V, Eq. [2) shows that, /7, has the same
value, denoted aS'’;. In what follows we analyze the accuracy of
estimatordy, (1 < k < K).

THEOREM 1. 0, (1 < k < K) is an asymptotically unbiased
estimate of),..

Proof. Applying Lemmd1, we have

n

.1 1(L(w) = lg)
lim — —_—
n1~>oo n Lz::l [we%:(si) ﬂ'sidw :l
> (m 3 I(Lg%ljilw: lk))
veV we./\/'(’u)
o,y v AW
weV veN (w)

weV

Similarly we prove thatim,, . C'/n == C,|V|. Therefore we
havelim,Hoo ék a—é> 0. O

We can easily find that neighbors of sampled nodes are biased t
nodes with high degrees even for UNI. Therefcﬁ@,is estimator
based on biased samples. Ribeiro and Towsley [27] shows that
UNI has smaller mean square error (MSE) for small degreesiode
than biased sampling methods such as RW. It is consisteimouwit
results in Sectioh]7, which show thé;; may exhibit larger MSE
than 6, defined in [[B). Thus, we present the following mixture
estimator fordy,

éz‘i’(:akék—k(l—ak)ék, 1<k<K, (5)

where parametery, lies between zero and one, and is used to deter-
mine the relative importance of two estimatgsandé,,. Suppose
thatd,. andd;, are independent. Theéi{"™ has the smallest variance

Var(6
In what follows we propose estimators of node label dergity
using the available neighborhood information of sampledisdor
directed OSNSs such as Pinterest, Sina microblog, and Xish@re
a node has knowledge of in-degrees (the number of folloveard)

out-degrees (the number of following) of its incoming ndigs



and outgoing neighbors. For a nodes V, denote byd? its in-
degree d© its out-degreeN" (v) = {u : (u,v) € E4} the set
of its followers, andNV©(v) = {u : (v,u) € Eq} the set of
its following. Definey(u,v) = 0 whenw is not a neighbor of
u, ¥(u,v) = 2 whenw is an out-going and incoming neighbor of
u, and otherwise)(u,v) = 1. LetN'(v) = NV (v) U NO(v).
Using the properties of sampled nodes’ neighbors, we estifiha
as follows

(L(w) =
+dP)

k)

e
=%

, 1<k<K,

P(si, w
Z Z . d(')

=1 weN(s;)
Whereé’d = Z?:l Z’LUEN(Si,) 1/}(32'7 w)ﬁ';l(dﬂ} + dSS))71

THEOREM 2. 5;; (1 € k < K) is an asymptotically unbiased
estimate ob)y,.

Proof. Applying Lemmd, we have

w)1(L(w) = lx)
(d(|)+d(o))

X 1
Jim Z

i=1

veV (

wEN (s;)

[ 3 77/1827

-
Z w ﬁ. d(')_’fdzo)) k)>

weN (v)
(v (w) = lk)
=Cad >
(I) ()
veV weN (v) duw +d
P(w (w) =)
=Cr ) D]
(I) ©)
weV veN (w) d +d
=Cx > UL(w) = lk) = Cx|V 0.

weV

The third equation holds becaue, . (., % (w,v) = d) + .
Similarly we proof thatlim,, ., C*/n =2 C,|V|. Therefore
we havelim, o0 0 225 6. 0

Next, we propose methods for graphs such as Citeseerx websit
where we can obtain a node’s neighbors’ out-degrees wheanve s
ple a node. However in-degrees of sampled nodes’ neighbers a
not available. Then we estimate node label dersitil < k& < K)
based on sampled nodes and their out-going neighborssthat i

g = 1* Z VT(L(SUZ)) =ly) n Z 1A(L(uzl)) =)
Cd i=1 Ts; (déz + ’Y) weNO)(s;) Ts; (dw + ’7)
whereC; = <7ﬂ @yt D weNOs)) —(d(T)) ,and

v > 0.

THeEOREM 3. 69 (1 < k < K) is an asymptotically unbiased
estimate of),..

Proof. Denote byVO(') the set of nodes iV whose in-degrees
are larger than 0. Clearly only nodesﬁﬁ') can appear in a node’s

out-going neighbor list. Applying Lemnia 1, we have

1
Jim =30 >

i=1 weNO)(s;)
=l) 1(L(w) = lx)
_> - ~ ‘ 7 + - 7
Z ( 7Tv d(l) + fY) Z Ty (dgul) + ’Y)

vev weNO) ()
B Y1(L l)
=C- | > d(') +

veV

vev\V{

[fyl(L(si) —W)

s, (d) + )

dY1(L(v) = 11,)
D+

=Cr | D 1L =L)+ Y 1(L()=1lL)
vev{ ve\V{

=Cr Y 1(L(w) = 1) = Cx|V 0.
weV

The first equation holds because

1(L(w) = 1)
UXE‘:/ wE/\%;)(’u) dﬂ)) +

1(L(w :lk
NP e

weV\V{) veNO(w)
d1(L(w) = 1)
d)+y

weV\V{

Similarly we proof thalim,,—, . X/n **% C|V|. Therefore we
havelims, —s oo 0(0) L5 0. O

Similar to the mixture estimatdri(5j; andd® can be combined
with 6y, to estimate,, more accurately.

4. EDGE LABEL DENSITY ESTIMATION

Define L(u, v) to be the label of edgéu, v), with rangeL’ =
{l1, ..., l'x,}. Denote the edge label density by= (71, ..., 7x"),
wherer, (1 < k < K') is the fraction of edges with labé]|. For
undirected graplz, we let edge label functiod(u, v) = L(v, u).
For example, when defing(u, v) = (min{dy, dv }, max{d., d. })
for edge(u, v) in undirected grapld, the pair of degrees of nodes
u andwv, 7 is the joint node degree distribution. Note that the la-
bels of edgegu,v) and (v, u) in directed graphG4 may not be
the same. In this section we propose methods for estimatifoy
undirected graphs and directed graphs respectively.

4.1 Simple Estimators of Edges Densities

Based on edgef(u;, v;) }i1,....» Sampled by RW and FS[_[27]
estimates, for an undirected grap& as follows

A 1 " ! / !

P = EZ1(L (wi,v))=13), 1<k<K'.

i=1

(6)

It shows that?, (1 < k < K') is an asymptotically unbiased
estimate ofr,, for undirected graphs. Similarly, in this paper we
estimater of directed grapltz; as follows

n

Z (L(L (us,vi) =

+1(L'(vi,ui) = l;ﬁ)l((vhui) S Ed)) .

1)1 ((us, vi) € Eaq)



where H; = Z?:l 1((’114'71]1') S Ed) + 1((Ui7ui) S Ed). We
can easily prove; (1 < k < K') is an asymptotically unbiased

estimate ofr; for directed grapht,.

4.2 Estimators Using Neighborhood Informa-
tion of Sampled Nodes

In this paper we assume that we can obtain the labels of all (in

used to detect high degree nodes. WRW can be viewed as a RW
over a weighted graph, where each edgev) € E has a posi-

tive weightw(u,v) = w(v,u) [6]. At each step, WRW selects
the next-hop node at random among the neighbors of the cur-
rent nodeu with probability proportional to weight(u, v). WRW

(with well defined edge weights) and RW are efficient for dietec
ing high degree nodes, since they are biased to sample high de

coming and outgoing) edges of a node when we query a node fromgree nodes [5,27]. Note that the WRW proposed. in [5] setshteig

G (Gq). Using the neighborhood information of sampled nosles
(1 < i < n)obtained by UNI, RW and FS, we estimateof G as
follows

7/
Z ) WWhaw=h) o pcr' @
’Llwe./\/'(a Trél

wherefl = 37, > wenr(s,) s, - Then we have

THEOREM 4. # (1 < k < K’) is an asymptotically unbiased
estimate ofr, for undirected graphs.

Proof. Applying Lemmd1, we have

[T Sl SEE LAY

i=1 weN(s;) s

=Cry > 1

veV weN (v)

e
veV v

1L (v, 0) = m)
lk) = 2Cx|E|T%.

Similarly we havehmHoo E[H /n] — 2C.|E|. Therefore we
havelimy,_s oo & —= 7. O

Utilizing the free neighborhood information of sampled ess;
1<i< n), we estimate;, of G4 as follows

( (50, w) = 1) 1((si,

UL (w,s;) =

w) € Ed)

i

)1 ((w

1((s4,w)€EY+1(w,5:)EEy)

T,
Si

=1 weN(s;)

" ) 8i) eEd)>

whereHa = Y711 3 e e . Simi-

lar to Theorenil4, we have

THEOREM 5. %7 (1 < k < K') is an asymptotically unbiased
estimate ofr, for directed graphs.

In summary, s = (71,...,7x/) and#* = (77, ..., 7%s/) com-
puted as described above form asymptotically unbiasethatds
of T for undirected and directed graphs respectively. Wheneasrop
ties of sampled nodes’ neighbors are available, we utilizedge
labels observed from this neighborhood information, araViple
asymptotically unbiased estimatés= (7,...,7x/) and¥
(71, ..., 7gs) of 7 for undirected and directed graphes respec-
tively.

5. HIGH DEGREE NODE DETECTION

In this section, we study the problem of detecting flienodes
with the largest degrees in undirected gragh= (V, FE). Let

w(u,v) = (dud,)” for each edgéu, v) € E for detecting top'
high degree nodes, which indicates that at each step thelWWR
need to obtain degrees of current sampled node’s neighHors-
ever their description does not account for the cost ofedtng this
information. In [20], a new method, expansion sampling (XS)
proposed for detecting high degree nodes. DenotdV/lfy) the
neighborhood of5, where \/(S) consists of nodes iy \ S that
are neighbors of nodes #, that isN'(S) = {u:u e V\ S,Jv €

S, (u,v) € E}. Starting from a random node andS = {s},
XS adds the node in/(.5) which has the largest number of neigh-
bors inV \ (M(S) U S) to S, and repeats this process. For a node

u € N(S), denote byd'®’ the number of edges betweenand

nodes inS, anddffv(s)) the number of edges betweerand nodes
in A/(S). Then, the number of its neighbors in\ (NV(S) U S)
equalsd, — d — dNEY | From knowledge of edges of nodes
in S, we knowd, andd’. Howeverdﬁf‘f(s)) cannot be obtained
based on available information 8fandA/(S). In order to identify

the node inV(S) which has the largest number of neighbors in
V\ (N(S) U S), itis necessary to crawl all nodesM(S). The
original description of XS[[20] does not account for thistcddn

the other hand when each node has knowledge of its neight®rs’
grees. Itis possible to identify the nodeAf(.S) that has the largest
number of neighbors iV \ S. Therefore we propose a Modified
XS (MXS) method, which adds this node fat each step. Fi-
nally we output theV nodes with the largest degreesNf(.S) U S

as the final results. The above methods can be easily modified t
identify N nodes with the largest in-degrees or out-degrees in di-
rected graph such as Sina microblog, Tencent microblogXand
ami, where a node has knowledge of its neighbors’ out-dsgied
in-degrees. Here at each step MXS adds the node with thestarge
sum of in-degree and out-degreeNf(S) to S.

6. SHORT PATH DISCOVERY

In this section, we study the problem of performing topology
discovery and message routing with incomplete topologitak-
mation, which is important for applications such as discpwa
short paths between OSN users and routing algorithms (eug- B
ble Rap|[[13]) for delivering messages between users usingials
network. Formally the problem is: Two nodesandv are look-
ing for short paths on undirected gragh Ribeiro et al.[[26] find
that a RW has the ability to observe a large fraction of theesdyy
visiting a relatively small number of nodes on power law disap
Here an edge is observed when at least one of its endpoinis-is v
ited by the RW. They propose a RW based short path discovery
algorithm works as follows: Two RWs are started framand v
separately. Each RW takds steps. LetS be the set of nodes
sampled by two RWs. Finally They use the shortest path in ob-
served graplG* = (V*, E™) for routing between: andv, where
V* = SUN(S) and E* consists of edges it which have at
least one endpoint contained By From Sectiof 5, we know that
WRW and MXS can efficiently find high degree nodes and observe

S be the set of nodes sampled by methods such as RW. Previousmore edges based on neighborhood information. We propase tw

methods use thé&vV nodes inS with the largest degrees to esti-
mate high degree nodes|[2, 5]. In [5], weighted RW (WRW) is

new methods, which perform a WRW and MXS starting from two
initial nodesu andwv respectively. We finally use the shortest path



in graphG* = (V*, E*) observed by WRW or MXS for routing
betweenu andv.

7. DATA EVALUATION

We perform our experiments on a variety of real world network
that are summarized in Talile 1. Xiami is a popular websitete/
to music streaming and music recommendations. Similar ti>- Tw
ter, Xiami builds a social network based on follower anddafing
relationships. Flickr and YouTube are popular photo stggand
video sharing websites. In these websites, a user can fhesor
other user updates such as blogs and photos. These netwarks ¢
represented by direct graphs, with nodes representing aser a
directed edge from to v represents that usersubscribes to user.
Epinions is a who-trusts-whom OSN providing general coresum
reviews, where a directed edge franto v represents that user
trusts usew. Slashdot is a technology-related news website for its
specific user community, where a directed edge fromo v rep-
resents that user tags usew as a friend or foe. In the following
experiments, we evaluate our methods in comparisons wéi-pr
ous methods based on the largest connected component (LfCC) o
these graphs under the same sampling budewvhere B is de-
fined as the number of sampled nodes.

Table 1: Overview of graph datasets used in our
simulations.“directed-edges" refers to the number of di-
rected edges in a directed graph, “edges" refers to the numbe
of edges in an undirected graph, and “LCC" refers to the
largest connected component of a given graph.

Graph LCC .
nodes edges directed-edges
Xiami [34] 1,748,010 16,015,779 16,568,449
YouTube [22] 1,134,890 2,987,624 4,942,035
Flickr [22] 1,624,992 15,476,835 22,477,014
Soc-Epinions[30]| 75,877 405,739 405,739
Soc-Slashdof[19] 77,360 469,180 828,161

7.1 Node Label Density Estimation

Let® = (64,...,0k) be the (in-) degree distribution, where
0r (1 < k < K) is the fraction of nodes with (in-) degrde In
our study, we estimate both. and &, = Zfikﬂ 0;, the CCDF
(complementary cumulative distribution function) &f which is
the statistic of choice when it comes to display (in-degosgree
distributions. For estimatdt,, we define the normalized root mean
square error (NMSE) as NMSE,) = +/E[(6x — 01)2]/0k, k =
1,2,.... In the following experiments, we use 1,000 independent
runs to estimate Eék — 61)?]. Similarly, we define the NMSE of
the CCDF off, which we denote as the CNMSE to avoid confusion
with the NMSE of6.

Fig.[ shows the CNMSEs of estimates of degree distribution
0 = (61,...,0k), where sampling budge® = 0.001|V|. Fig.[d

shows that the degree estimates produced by UNI and FS using

neighbor information almost have the same accuracy. FotHeS,
degree distribution estimate greatly improves when neghifor-
mation is used, which is almostice as accurate than previous FS
without using neighbor information for Xiami._[27,129] shdhat
NMSEs are roughly proportional t/+/B. It indicates that FS us-
ing neighbor information iour timesmore time efficient than the
previous FS, which is consistent with our results shown n [Bi
For UNI method, the degree distribution estimator basedsamgu

the neighbor information of sampled nodes exhibits largesrs
than the estimator given by sampled nodes for small degdses (
grees smaller than 20 for Xiami, 30 for YouTube). For the degr
distribution estimator given by neighbors of sampled nodescan
see that FS is more accurate than UNI for most degrees.

For directed graphs, Fi@] 3 shows results for the in-degree d
tribution estimates. When in-degrees and out-degreesnoplsa
nodes are available, the in-degree distribution estimgiten by
neighbors of sampled nodesitperformsthe estimator given by
sampled nodes for FS method. For small in-degrees (3 for Xi-
ami, 18 for YouTube), the in-degree distribution estimajaen
by neighbors of sampled nodes exhibits larger errors tharesh
timator given by sampled nodes for UNI method. Meanwhile, th
results show that we can also give an accurate in-degreédisdn
estimate given by out-going neighbors of sampled nodes;wiki
a little less accurate than the estimate obtained by alhheig’ in-
formation. Fig[% shows the results of the mixture estimatdg).

We observe that the mixture estimatmutperformsthe estimator
based on sampled nodes and the estimator based on neigfibors o
sampled nodes. Letdenote the cost of UNI, the average number
of IDs queried until one valid ID is obtained. For exampldcki

has a random node sampling costcof= 77 [29]. Here we set

the cost of crawling methods FS and RW as 1. Next we compare
with performance of crawling methods with social sampliB&],

a node sampling method proposed by Dasgupta €flal. [7]. Here S
is equivalent to the estimator given by neighbors of nodespted

by UNI. Fig.[3 shows that SS exhibits larger errorscascreases.
When sampling cost = 10, FS and RW are much more accurate
than SS under the same sampling budget. Meanwhile we can see
that FS exhibits smaller errors than RW.

UNI
UNI, neighbors
FS

FS, neighbors

UNI
UNI, neighbors
FS

FS, neighbors

o

2 4 2 4 5

10 10°
degree

(b) YouTube

10> 10°
degree

(a) Xiami

10 10 10

Figure 1: Results of degree distribution estimations for umli-
rected graphs,B = 0.001|V|.
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Figure 2: To achieve the same MSE, regular FS requires at leas
4x the number of the samples of FS with neighbor information.

7.2 Edge Label Density Estimation
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Figure 3: Results of in-degree distribution estimations fo di-
rected graphs,B = 0.001|V|.

Figure 4: Results of degree distribution estimations for the mix-
ture estimator, B = 0.001|V/|.
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We evaluate the performance of our methods for estimatiag th *
joint degree distributiop = (¢(i,7) : ¢ > 5 > 0) for undirected . M’/\\ 5 AR
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Fig.[@ shows the complementary cumulative distributiorcfiom
(CCDF) of § for 1,000 independent estimates, where the sampling Figure 5: Results of degree distribution estimations for difer-
budget isB = 0.001|V/|. It shows that RW and UNI using sampled  ent node sampling cost, B = 0.001|V/|.
nodes’ neighborhood information are more accurate. Alivetes
have errors larger than 0.1 when we have no knowledge of saimpl
nodes’ degrees. More than 85% of estimates have errorsesmall
than 0.1 when sampled nodes’ degrees are available.

Let us illustrate how to apply the edge label density esiivnat
Consider the directed graph of Xiami, 53.8% of users are MJe
37.5% are female (F), and 8.7% are unknown (U). A directe@edg
(u, v) can be classified into the following nine types when the edge
label is defined as.gender — v.gender: 1) M—M, 2) M—F, 3)
M—U, 4) F—M, 5) F—F, 6) U, 7) U—M, 8) U—F, 9) U—U.
Fig.[4 shows edge density= (71, ..., 79), Wherer; (1 <7 < 9)
is the fraction of type edges. We can easily find that the fraction
of edges with a certain edge type approximately equals the-pr
uct of the fractions of nodes with its two endpoints’ genddrisis

asw(u,v) = (dudy,)® for WRW. For previous methods without
free neighborhood information of sampled nodes, we asstate t
XS and WRW both must retrieve degree information of a neighbo
of sampled nodes with the same cost of sampling a node.[Fig. 9
shows that all of RW, WRW, and XS need to sample more than
10% of nodes to obtain an accurate result for detecting @fp-1
degree nodes with the largest degrees. [Ely. 10 shows thsrefu
RW, WRW, and MXS using free neighborhood information of sam-
pled nodes. A total of 1,000 runs are used to produce the gegra
seen in the graph. It shows that RW, WRW, MXS using neighbor-
hood information are much more efficient than previous masho
and MXS outperforms RW and WRW. We observe that MXS de-
indicates that users’ following behaviors in Xiami are noedtly tects almost 90% of the top-100 high degree nodes based oy a ve
related with gender. Fifil 8 shows results for estimatinGimilarly small fraction of sampled node® = 10~° x |V|. Meanwhile,

we can find that RW and UNI using sampled nodes’ neighborhood we compare MXS and XS based on the assumption that XS can
information exhibits small errors, and are two times morauaate be implemented at no cost of looking up sampled nodes’ neigh-
than the simple RW method. bor’s neighbor information, and find they has little diffece. We
omit the details here. Similarly Figs.111 and 12 show that MXS
much more efficient than the other two methods for detectipg t
100 high out-degree nodes and top-100 high in-degree nodds f
rected graphs, where each node has the knowledge of itsegjh

7.3 High Degree Node Detection

Fig[d shows the results of previous methods for detectipg to
100 high degree nodes, where the edge weight function isedkfin
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out-degrees and in-degrees. The edge weight function of VIERW
defined aso(u,v) = (d? + d)? (d© 4 d)”.

7.4 Short Path Discovery

Fig.[13 shows that MXS observes many more edges than WRW
and RW under the same sampling buddgetwhere edge weight
function is defined asv(u,v) (dudy)? for WRW. Note that
wheng3 = 0, WRW is the same as RW. A8 increases, we can
see that WRW collects more edges. In what follows we evalu-
ate our MXS and WRW based short path discovery methods com-
pared with the previous RW based method. inl [26]. For two nodes
with distanced < oo in G, let d* be the length of the short path

observed by sampling methods. When there is no path observed

for them, we denotel* oo, and a failure is reported. For all
d* < oo, we useE[d" — d] as a metric to measure the performance
of detecting the shortest paths. Figs[1%-16 show resultsf®00
node pairs generated randomly, where the sampling budget is
as B = 20. Fig.[12 shows the fractions of sampled node pairs
with given distances (length of shortest pathes in origimaphes)
for Soc-Slashdot and Soc-Epinions. Higl 15 shows the trastof
short path discovery failures as a function of the distantexis
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Figure 8: (Xiami) NMSE of edge gender type density estimates

shows the fraction of failures for node pairs with a givertatise.

We can see that RW and WRW generate a large number of failures
especially for node pairs with a long distance. Howeverdhegal-
most no failure for our new method MXS. Moreover Higl 16 shows
that MXS and WRW usually discover shorter paths in compariso
with RW.
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8. APPLICATIONS

Foursquare is a location-based OSN, which provides web and
mobile services for users to explore interested placesemeItips
or comments, and share their check in histories to theindise
As of December 2012, it has over 25 million active useis [f]. |
Foursquare when we visit a node, we can also obtain its fsiend
locations (living places) and degrees. In what follows, we aur
methods which take advantage of this neighborhood infaomat
to characterize the Foursquare graph topology. Base®x 10°
users we sampled and their neighborhood information, vienatt
the node degree distribution, joint degree distributior Epcation
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distribution. To obtain the optimal parameter (1 < k < K) of
our mixture estimator if{5), we first split sampled nodes ib®0
subsets with the same size. The variancé.ah Equation[(B), the
estimator using sampled nodes, is computed based on itsaesti
tions obtained from 100 node subsets. Similarly, we esgrtia
variance ofd;, in Equation [@), the estimator only using neighbor-

. : _ Var(d;,) :
hood information. We th_en set;, = Var) ey _F|g.[_ﬂ (@)
shows results of estimating degree distribution using obxture
estimator based on all sampled nodes. Average degreerisatsti

as 21.2. We can see that the degree distribution of Foursqoas

ity of users’ locations. For example, users from Katsustikan
Tokyo, Japan may reveal their locations as “KatsushikaFalayo,
Japan”, “Katsushika-ku, Tokyo”, or “Tokyo, Japan”. For giio-
ity, we split sampled users’ location strings by comma, dagsify
two locations into a same group when they have at least orilasim
substring. Hence, there location strings in the above elamitl
be clustered together and labeled by the most frequency gzart
“Tokyo”. Due to the limited space, we only show results fop to
20 popular locations. We can see that the most popular tocati
Foursquare is New York state (NY), which accounts for ned@i§6
of uses. The second popular location is Indonesia, whichuate
for 8%.

We randomly sample 20 nodes with degrees not smaller than one
and apply a MXS starting from each random node, where the sam-
pling budgetB is 1,000. For the top 100 nodes with largest degrees
in all sampled nodes and their neighbors given by 20 MXSes, we
show their frequencies detected by MXSes in Eig. 17 (d), e/tiee
y-axis is defined as the fraction of MXSes successfully detkthe
i-th high degree nodd, < i < 100. We can see that most of these
high degree nodes are detected by 90% of MXSes, which irdicat
that they may be very close to the ground truth. These highegeg
nodes have degrees in the range [1061, 1083], which are simown
Fig.[T4(e). The top three high degrees are 1396, 1200, angl 118
Fig.[T2(f) shows the length distribution of discovered sipathes
between 20 initially sampled nodes. Pathes for all 190 nauies p

not exhibit a heavy tail, which has a sharp drop starting from de- are successfully discovered. Pathes with lengths 5, 6, asdaunt
gree 1,000. This may be caused by the policy set by Foursqurefor 93%. The average length is 5.8.

which limits users to have only 1,000 friends [9]. From our ob

Pinterest is a photo sharing OSN, which allows users to ereat

served edges, we find that 53.8% of edges have no node with de-boards (theme-based image collections) and pin/repitetpim-

gree larger than 100. Fig.117 (c) show results for estimgbimg
degree distributionp = (4(4,5) : i > j > 0), whereg(i, 5) is
the fraction of edges consisting of two nodes with degraad j
separately. This result is quite interesting for it showat friends
tend to have similar degrees. Higl 17 (b) shows Foursquams'us
location distribution. Note that users could provide any srings
to Foursquare as their locations. This induces differeahgiar-

ages onto their boards from other Pinterest users’ imagelbaad
external websites. Similar to Twitter, Pinterest users ftdliow
other users if they have similar tastes. In Pinterest whenisiea
node we can also obtain its friends’ in-degree (number dbfol
ers) and out-degree (number of following). We collected@O,
users using a RW. The maximum in-degree and out-degree we dis
covered is 13,331,207, and 61,338. The CCDFs of in-degrde an
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Figure 11: (Our methods, using neighborhood information ofsampled nodes) Results of top-100 high out-degree node detien.
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out-degree distributions are shown as Eig. 18.

9. RELATED WORK

Few network sampling methods use neighborhood information
to provide accurate estimates that have convergence deasan
The work closest to ours is Dasgupta etlal. [7]. Dasgupta atza-
domly samples nodes (either uniformly or with a known biag) a
then uses neighborhood information to improve its unbiasgd
timator. However, randomly sampling nodes is practicalydhl
performed uniformly (in our scenarios, rejection sampliadias
the samples makes little sense) and suffers from low quéeyima
NoSQL graph databases and Web APIs. Dasgupta et al. partiall
compensates the low query rate through the use of neighbdrho
information present in the node query reply of a number ofomaj
OSNs. Moreover, their estimators require knowledge of elegr
of sampled nodes’ neighbors, which incurs extra query cgken
applied to OSNs such as Pinterest and Sina microblog thabtlo n
provide free neighbor degree information.

Kurant et al.[14] designs a RW-based method that uses a teeigh
RW to perform stratified sampling on social networks. Thesmghts
are computed using neighborhood information. Kurant etises
their technique on Facebook and show that their stratifiegbiag
technique achieves higher estimation accuracy than otba#rads.
However, the neighborhood information in their method risited
to helping find random walk weights and not used in the estima-
tor. Interestingly, our estimator can be easily combinethhe
weighted random walk in_[14] to improve its accuracy.

Maiya and Berger-Wol{[21] empirically investigates thafoe-
mance of a number of subgraph sampling methods (e.g., breadt
first search, random walks, etc.) and their performancesipeet to
various topological properties (e.g., degree, clustecmefficient).
Maiya and Berger-Wolf, however, does not use neighborhoed i
formation to improve the estimators or provide convergemaar-
antees. The literature also shows a variety of subgraph Isamp
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works without convergence or accuracy guarantees [12wihigh
have been empirically tested over a variety of networks. diiwve
works [12[17],211] also consider subgraph sampling tectasidoat
can preserve other metrics, such as the eigenvalues ofitfieabr
network [17], but without accuracy guarantees.

Breadth-First-Search (BFS) introduces a large bias tosvhigh
degree nodes, and it is difficult to remove these biases iargén
although it can be ameliorated if the network in questionlis a
most random[[15]. Random walk (RW) is biased to sample high
degree nodes, however its bias is known and can be easily cor-
rected([[27]. Random walks in the form of Respondent Drivem-Sa
pling (RDS) [11/31] has been used to estimate populatiosities
using snowball samples of sociological studies. RDS wagldev
oped for small social networks with hidden links while ourthesl
considers large online social networks without hiddendink

The Metropolis-Hasting RW (MHRW)_[33] modifies the RW
procedure, aimed at sampling nodes with equal probabHtyw-
ever, in Ribeiro and Towsley [28] we prove that MHRW degree
distribution estimates perform poorly in comparison to RWiere
markedly for large degree nodes whose error grows propaitio
to the degree value. Empirically, the accuracy of RW and MHRW
has beeen compared [n 10| 25] and, as predicted by our tiedre
results, RW is consistently more accurate than MHRW.

10. CONCLUSIONS AND FUTURE WORK

In this paper, we study the problem of estimating charasteri
tics for graphs where nodes have knowledge of their neighbor
properties. This feature is actually quite common in man\§S
such as Pinterest [24], Foursquare [8], Sina microhlog, [@2d Xi-
ami [35]. We propose efficient network characteristic (éegand
edge density distributions) estimators from sampling Whiave
show provable convergence and accuracy guarantees. Olioanet
is tailored to NoSQL graph databases (e.g. Neo4j) and tredfp
Web API present in major social network websites such as-Face
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degree are 60.2 and 61.1, respectively.
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Figure 17: Foursquare structure statistics.

book, Google+, Twitter, Pinterest [24], and Foursquale V8§ can
also adapt known techniques to detect high-degree nodeshand
path discovery between nodes . Our experimental resultg giai
our estimator drastically reduces (by 4-fold) the numbesasfiples
required to achieve the same estimation accuracy. Our ajéreer
tion allows us to include neighboring information in theimsttion

of a variety of network characteristics from nodes samplgidg!

a random walk-based technique called Frontier Samgling |83
future work, we plan to replace Lemriia 2 with a bound that, for
m > 1, considers all samples of FS.
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