Skip to main content
Log in

Spatiotemporal traffic network analysis: technology and applications

  • Survey Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

The rapid development of intelligent transportation systems and the emergence of the sharing economy have given rise to vast amounts of spatiotemporal data. Consequently, spatiotemporal traffic network analysis has become a crucial approach to traffic managers in traffic control, route guidance, traffic policy adjustment, and transportation network planning. This study provides a comprehensive survey of recent developments in spatiotemporal traffic network analysis and reviews the latest research ranging from 2000 to 2016. This paper focuses on overall methods and general characteristics involved in traffic network analysis. First, we introduce some potential applications of spatiotemporal traffic network analysis. Second, we discuss data sources and corresponding pretreatment methods. Then, we investigate various existing methodologies to examine the state of the art in traffic network analysis. At the end of this survey, we provide more detailed discussions on future research challenges and new research points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anisi MH, Abdullah AH (2016) Efficient data reporting in intelligent transportation systems. Netw Spat Econ 16(2):623642

    Article  MathSciNet  MATH  Google Scholar 

  2. Vega Lopez IF, Snodgrass RT, Moon B (2005) Spatiotemporal aggregate computation: a survey. IEEE Trans Knowl Data Eng 17(2):271286

    Google Scholar 

  3. Zhang HS, Zhang Y, Xu JH, Xiao DY (2003) Study on ITS data management based on multiagent systems. Intelligent Transportation Systems, 2003. Proceedings (Vol.1, pp.183187 vol.1). IEEE

  4. Cheng C, Yang H, Lyu MR, King I (2013) Where you like to go next: successive point-of-interest recommendation. In: International joint conference on artificial intelligence. AAAI Press

  5. Lee WH, Tseng SS, Tsai SH (2009) A knowledge based real-time travel time prediction system for urban network. Expert Syst Appl 36(3):42394247

    Google Scholar 

  6. Liang Z, Wakahara Y (2014) Realtime urban traffic amount prediction models for dynamic route guidance systems. Eurasip J Wirel Commun Netw 2014(1):85

    Article  Google Scholar 

  7. Park D, Rilett LR, Han G (1999) Spectral basis neural networks for real-time travel time forecasting. J Transp Eng 125(125):515523

    Google Scholar 

  8. Lint JWCV, Hoogendoorn SP, Zuylen HJV (2005) Accurate freeway travel time prediction with state-space neural networks under missing data. Transp Res Part C Emerg Technol 13(5–6):347369

    Google Scholar 

  9. Jiang X, Adeli H (2004) Clustering neural network models for freeway work zone capacity estimation. Int J Neural Syst 14(3):147

    Article  Google Scholar 

  10. Pan B, Gupta C, Gupta C, Shahabi C (2015) Forecasting spatiotemporal impact of traffic incidents for next generation navigation systems. Knowl Inf Syst 45(1):75104

    Article  Google Scholar 

  11. Vlahogianni EI, Karlaftis MG, Golias JC (2005) Optimized and metaoptimized neural networks for short-term traffic flow prediction: a genetic approach. Transp Res Part C 13(3):211234

    Article  Google Scholar 

  12. Zheng W, Lee DH (2006) Short-term freeway traffic flow prediction: bayesian combined neural network approach. Journal of Transportation Engineering 132(2):114121

    Article  Google Scholar 

  13. Padiath A, Vanajakshi L, Subramanian SC, Manda H (2009) Prediction of traffic density for congestion analysis under Indian traffic conditions. In: International IEEE conference on intelligent transportation systems, p 16. IEEE

  14. Anand A, Ramadurai G, Vanajakshi L (2014) Data fusion-based traffic density estimation and prediction. J Intell Transp Syst 18(4):367378

    Article  Google Scholar 

  15. Vanajakshi L, Rilett LR (2004) A comparison of the performance of artificial neural networks and support vector machines for the prediction of traffic speed. Intelligent Vehicles Symposium pp 194199. IEEE

  16. Wu CH, Ho JM, Lee DT (2004) Travel time prediction with support vector regression. IEEE Trans Intell Transp Syst 5(4):276281

    Article  Google Scholar 

  17. Jiang G, Zhang R (2002) Travel time prediction for urban arterial road. In: Intelligent transportation systems, 2003. Proceedings vol 2, pp 14591462. IEEE

  18. Xu G, Jin HH, Liu J (2013) Traffic status prediction and analysis based on mining frequent subgraph patterns. Adv Mater Res 605607:25432548

    Google Scholar 

  19. Len M, Mkrtchyan L, Depaire B, Da R, Vanhoof K (2014) Learning and clustering of fuzzy cognitive maps for travel behaviour analysis. Knowl Inf Syst 39(2):435462

    Google Scholar 

  20. Rice J, Van Zwet E (2004) A simple and effective method for predicting travel times on freeways. Intelligent Transportation Systems IEEE Transactions on 5(3):200207

    Article  Google Scholar 

  21. LIN W, KULKARNI A, MIRCHANDANI P (2004) Short-term arterial travel time prediction for advanced traveler information systems. J Intell Transp Syst 8(3):143154

    MATH  Google Scholar 

  22. Guo F, Krishnan R, Polak J (2013) A computationally efficient twostage method for short-term traffic prediction on urban roads. Transp Plan Technol 36(1):6275

    Article  Google Scholar 

  23. Ota K, Dong M, Zhu H, Chang S, Shen X (2011) Traffic information prediction in Urban vehicular networks: a correlation based approach. In: Wireless communications and NETWORKING conference vol 34, pp 1021–1025. IEEE

  24. Min X, Hu J, Zhang Z (2010) Urban traffic network modeling and shortterm traffic flow forecasting based on GSTARIMA model, pp 1535–1540

  25. Guardiola IG, Leon T, Mallor F (2014) A functional approach to monitor and recognize patterns of daily traffic profiles. Transp Res Part B 65(4):119136

    Google Scholar 

  26. Xuexiang JIN, Zhang Yi LI, Li LI, Jian ming HU (2008) Robust pca-based abnormal traffic flow pattern isolation and loop detector fault detection. Tsinghua Sci Technol 13(6):829835

    Google Scholar 

  27. Zhang HS, Zhang Y, Li ZH, Hu DC (2004) Spatial-temporal traffic data analysis based on global data management using mas. IEEE Trans Intell Transp Syst 5(4):267275

    Article  Google Scholar 

  28. Zhang X, Onieva E, Perallos A, Osaba E, Lee VCS (2014) Hierarchical fuzzy rulebased system optimized with genetic algorithms for short term traffic congestion prediction. Transp Res Part C Emerg Technol 43(2):127142

    Google Scholar 

  29. Clark S (2003) Traffic prediction using multivariate nonparametric regression. J Transp Eng 129(2):161168

    Article  Google Scholar 

  30. Liu X (2012) Modeling network traffic based on radial basis function nerual network. Microcomput Appl 2:030

    Google Scholar 

  31. Wu T, Wang S, He J, Hu W, Rao J, Liu X (2013) Method and system for traffic prediction based on spacetime relation. US, US8606727

  32. Qin M, Zhang W, Zhong X, Xi Y (2015) Time and space optimization based on kalman filtering traffic prediction. Sci Mosaic 2015(1):26–29

  33. Pang LX, Chawla S, Liu W, Zheng Y (2011) On mining anomalous patterns in road traffic streams. In: International conference on advanced data mining and applications, vol 22, pp 237—251. Springer

  34. Liu W, Zheng Y, Chawla S, Yuan J, Xing X (2011) Discovering spatiotemporal causal interactions in traffic data streams. ACM sigkdd international conference on knowledge discovery and data mining, pp 1010–1018. ACM

  35. Gupta CK, Serebryakov S, Castellanos MG (2014) Determining a spatiotemporal impact of a planned event on traffic. US, US 20140039782(A1):2014

  36. Chawla S, Zheng Y, Hu J (2012) Inferring the root cause in road traffic anomalies. In: IEEE, international conference on data mining, pp 141–150. IEEE Computer Society

  37. Zhang Z, He Q, Tong H, Gou J, Li X (2016) Spatial-temporal traffic flow pattern identification and anomaly detection with dictionary-based compression theory in a large-scale urban network. Transp Res Part C Emerg Technol 71:284302

    Google Scholar 

  38. Method PA (2015) An approach to modeling the impact of traffic incident on urban expressway. Discrete Dyn Nat Soc 2015(1856):18

    Google Scholar 

  39. Song X, Horanont T, Ueyama S, Zhang Q, Sekimoto Y, Shibasaki R (2013) An intelligent system for largescale disaster behavior analysis and reasoning. IEEE Intell Syst 99:1

    Google Scholar 

  40. Traffic analysis report for major cities in China (2017) AMap. http://report.amap.com/share.do?id=8a38bb86614afa0801614b0a029a2f79. Retrieved from Oct 2017

  41. Yao T, Wei MM, Zhang B, Friesz T (2012) Congestion derivatives for a traffic bottleneck with heterogeneous commuters. Transp Res Part B 44(10):11491165

    Google Scholar 

  42. Bokui CHEN, Xiaoyan SUN, Hua WEI, Chuanfei DONG, Binghong WANG (2011) Piecewise function feedback strategy in intelligent traffic systems with a speed limit bottleneck. Int J Mod Phys C 22(8):849860

    MATH  Google Scholar 

  43. Newell GF (1998) A moving bottleneck. Transportation Research Part B Methodological 32(8):531537

    Google Scholar 

  44. Herty M, Klar A (2003) Modeling, simulation, and optimization of traffic flow networks. Soc Ind Appl Math 25:1066–1087

    MathSciNet  MATH  Google Scholar 

  45. Mccrea J, Moutari S (2010) A hybrid macroscopicbased model for traffic flow in road networks. Eur J Oper Res 207(2):676684

    Article  MATH  Google Scholar 

  46. Long JC, Gao ZY, Ren HL, Lian AP (2008) Urban traffic congestion propagation and bottleneck identification. Sci China 51(7):948

    MathSciNet  MATH  Google Scholar 

  47. Nakata M, Yamauchi A, Tanimoto J, Hagishima A (2010) Dilemma game structure hidden in traffic flow at a bottleneck due to a 2 into 1 lane junction. Phys A 389(23):53535361

    Article  Google Scholar 

  48. Lee WH, Tseng SS, Shieh JL, Chen HH (2011) Discovering traffic bottlenecks in an urban network by spatiotemporal data mining on locationbased services. IEEE Trans Intell Transp Syst 12(4):10471056

    Google Scholar 

  49. Zhou H, Hirasawa K (2014) Traffic conduction analysis model with time series rule mining. Expert Syst Appl 41(14):65246535

    Article  Google Scholar 

  50. Petty KF, Moylan AJ (2016) Traffic bottleneck detection and classification on a transportation network graph. US9330565

  51. Wahle J, Annen O, Schuster C, Neubert L, Schreckenberg M (2001) A dynamic route guidance system based on real traffic data. Eur J Oper Res 131(2):302308

    Article  MATH  Google Scholar 

  52. Jin Z, Hui W, Ping L (2003) Towards the applications of multiagent techniques in intelligent transportation systems. In: Intell Transp Syst, 2003. Proceedings vol 2, pp 1750–1754. IEEE

  53. Gomez A, Diaz G, Boussetta K (2012) How virtual police agents can help in the traffic guidance? Wireless communications and NETWORKING conference workshops, pp. 360-364. IEEE

  54. Yuan J, Zheng Y, Zhang C, Xie W, Xie X, Sun G et al (2010) Tdrive: driving directions based on taxi trajectories. In: Sigspatial international conference on advances in geographic information systems, pp 99-108. ACM

  55. Bochtis DD, Srensen CG, Busato P, Berruto R (2013) Benefits from optimal route planning based on b-patterns. Biosyst Eng 115(4):389395

    Article  Google Scholar 

  56. Niaraki AS, Kim K (2009) Ontology based personalized route planning system using a multicriteria decision making approach. Expert Syst Appl 36(2):22502259

    Article  Google Scholar 

  57. Yuan NJ, Zheng Y, Zhang L, Xie X (2013) Tfinder: a recommender system for finding passengers and vacant taxis. IEEE Trans Knowl Data Eng 25(10):23902403

    Article  Google Scholar 

  58. Montiel O, Seplveda R, Orozco Rosas U (2015) Optimal path planning generation for mobile robots using parallel evolutionary artificial potential field. J Intell Rob Syst 79(2):237257

    Article  Google Scholar 

  59. Kanoh H (2007) Dynamic route planning for car navigation systems using virus genetic algorithms. Int J Knowl Based Intell Eng Syst 11(1):6578

    Google Scholar 

  60. Ding B, Yu JX, Qin L (2008) Finding timedependent shortest paths over large graphs. In: International conference on extending database technology: advances in database technology, pp 205-216. ACM

  61. Hua M, Pei J (2010) Probabilistic path queries in road networks:traffic uncertainty aware path selection. In: International conference on extending database technology, pp 347-358. ACM

  62. Shang S, Lu H, Pedersen TB, Xie X (2013) Finding trafficaware fastest paths in spatial networks. In: International conference on advances in spatial and temporal databases, vol 8098, pp 128–145

  63. Shang S, Liu J, Zheng K, Lu H, Pedersen TB, Wen JR (2015) Planning unobstructed paths in trafficaware spatial networks. Geoinformatica 19(4):723746

    Article  Google Scholar 

  64. Shang S, Guo D, Liu J, Liu K (2014) Human mobility prediction and unobstructed route planning in public transport networks. In: IEEE, international conference on mobile data management vol 2, pp 43–48. IEEE Computer Society

  65. Guo C, Yang B, Andersen O, Jensen CS, Torp K (2015) Ecomark 2.0: empowering ecorouting with vehicular environmental models and actual vehicle fuel consumption data. Geoinformatica 19(3):567599

    Article  Google Scholar 

  66. Adomavicius G, Tuzhilin A (2013) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. Springer, Berlin

    Google Scholar 

  67. Zheng H, Wu J (2017) Online to offline business: urban taxi dispatching with passenger-driver matching stability. In: IEEE, international conference on distributed computing systems, pp 816–825. IEEE

  68. Wang L, Liu X, Wang Z, Li Z (2013) Urban traffic signal system control structural optimization based on network analysis. Math Probl Eng 2013(3):19

    Google Scholar 

  69. Wang L, Wei L, Zhang YZ, Li ZX (2011) Node importance assessment of traffic complex network based on cmeans clustering. Adv Mater Res 211212:963–967

    Google Scholar 

  70. Song C, Qu Z, Blumm N, Barabasi AL (2010) Limits of predictability in human mobility. APS March meeting vol 327, pp 1018. American Physical Society

  71. Toole JL, Colak S, Sturt B, Alexander LP, Evsukoff A, Gonzlez MC (2015) The path most traveled: travel demand estimation using big data resources. Transp Res Part C 58:162177

    Article  Google Scholar 

  72. Wang MH, Schrock SD, Broek NV, Mulinazzi T (2013) Estimating dynamic origindestination data and travel demand using cell phone network data. Int J Intell Transp Syst Res 11(2):7686

    Google Scholar 

  73. Alexander L, Jiang S, Murga M, Gonzlez MC (2015) Origindestination trips by purpose and time of day inferred from mobile phone data. Transp Res Part C Emerg Technol 58:240250

    Article  Google Scholar 

  74. Yuan J, Zheng Y, Xie X (2012) Discovering regions of different functions in a city using human mobility and POIs. In: ACM SIGKDD international conference on knowledge discovery and data mining, pp 186-194. ACM

  75. Parent C, Spaccapietra S, Renso C, Andrienko G, Andrienko N, Bogorny V et al (2013) Semantic trajectories modeling and analysis. ACM Comput Surv 45(4):132

    Article  Google Scholar 

  76. Chakri S, Raghay S, El S (2015) Modeling, mining, and analyzing semantic trajectories: the process to extract meaningful behaviors of moving objects. Int J Comput Appl 124(8):9758887

    Google Scholar 

  77. Bottero M, Chiara BD, Deflorio FP (2013) Wireless sensor networks for traffic monitoring in a logistic centre. Transp Res Part C 26(1):99124

    Google Scholar 

  78. Piecha J (2012) Digital camera as a data source of its solutions in traffic control and management. Transp Probl Int Sci J 7(4):5770

    Google Scholar 

  79. Yuan Q, Cong G, Sun A (2014) Graphbased point-of-interest recommendation with geographical and temporal influences. ACM, New York City, pp 659–668

    Google Scholar 

  80. Ying JC, Kuo WN, Tseng VS, Lu HC (2014) Mining user check-in behavior with a random walk for urban point-of-interest recommendations. ACM Trans Intell Syst Technol 5(3):126

    Article  Google Scholar 

  81. Jiang S, Alves A, Rodrigues F, Ferreira J Jr, Pereira FC (2015) Mining point-of-interest data from social networks for urban land use classification and disaggregation. Comput Environ Urban Syst 53:3646

    Google Scholar 

  82. Zheng F, Zuylen HV (2013) Urban link travel time estimation based on sparse probe vehicle data. Transp Res Part C 31(31):145157

    Google Scholar 

  83. Mai E, Hranac R (2013) Twitter interactions as a data source for transportation incidents. Transportation research board annual meeting

  84. Zhang S (2015) Using twitter to enhance traffic incident awareness. In: IEEE, international conference on intelligent transportation systems, pp 2941–2946. IEEE

  85. Peng D, Zuo X, Wu J, Wang C, Zhang T (2009) A Kalman filter based information fusion method for traffic speed estimation. In: International conference on power electronics and intelligent transportation system, vol 1, pp 374–379. IEEE

  86. Wang C, Zhu Q, Shan Z, Xia Y (2014) Fusing heterogeneous traffic data by Kalman filters and Gaussian mixture models. In: IEEE, international conference on intelligent transportation systems, pp 276–281. IEEE

  87. Cao L, Liang H, Wu Y, Su X (2015) An effective data preprocessing method for traffic flow based on SVR. J Comput Inf Syst 11(1):297306

    Google Scholar 

  88. Narasimhan H, Tripuraribhatla R, Easwarakumar KS (2011) Fuzzy inference based data preprocessing for VBR video traffic prediction. In: IEEE, international conference on internet multimedia services architecture and application, pp 16. IEEE

  89. Wang Y, Papageorgiou M (2005) Realtime freeway traffic state estimation based on extended kalman filter: a general approach. Transp Res Part B Methodol 39(2):141–167

    Article  Google Scholar 

  90. Wang J, Wang J (2007) Reducing carrier phase errors with emd wavelet for precise GPS positioning. Proc Natl Tech Meet Inst Navig NTM 6682(1):919928

    Google Scholar 

  91. Thianniwet T, Phosaard S, Pattaraatikom W (2009) Classification of road traffic congestion levels from GPS data using a decision tree algorithm and sliding windows. Lecture notes in engineering and computer science vol 2176(1)

  92. Kasai M, Warita H (2015) Refinement of pattern-matching method for travel time prediction. Int J Intell Transp Syst Res 13(2):111

    Google Scholar 

  93. Li L, Su X, Wang Y, Lin Y, Li Z, Li Y (2015) Robust causal dependence mining in big data network and its application to traffic flow predictions. Transp Res Part C 58:292–307

    Article  Google Scholar 

  94. Song R, Sun W, Zheng B, Zheng Y (2014) Press: a novel framework of trajectory compression in road networks. Proc Vldb Endow 7(9):661–672

    Article  Google Scholar 

  95. Xiao Y, Xie Y M, Lu L, Gao S (2004) The traffic data compression and decompression for intelligent traffic systems based on two-dimensional wavelet transformation. In: International conference on signal processing, 2004. Proceedings. ICSP vol 3, pp 2560–2563. IEEE

  96. Zhou X, Mahmassani HS (2007) A structural state space model for realtime traffic origindestination demand estimation and prediction in a day-to-day learning framework. Transp Res Part B Methodol 41(8):823840

    Article  Google Scholar 

  97. Anbaroglu B, Heydecker B, Cheng T (2014) Spatiotemporal clustering for nonrecurrent traffic congestion detection on urban road networks. Transp Res Part C 48:4765

    Article  Google Scholar 

  98. Depaire B, Wets G, Vanhoof K (2008) Traffic accident segmentation by means of latent class clustering. Accid Anal Prev 40(4):1257–1266

    Article  Google Scholar 

  99. Keay K, Simmonds I (2005) The association of rainfall and other weather variables with road traffic volume in Melbourne, Australia. Accid Anal Prev 37(1):109

    Article  Google Scholar 

  100. Zhao J, Bukkapatnam S, Dessouky MM (2003) Distributed architecture for realtime coordination of bus holding in transit networks. Intell Transp Syst IEEE Trans 4(1):4351

    Google Scholar 

  101. Herrera JC, Bayen AM (2008) Traffic flow reconstruction using mobile sensors and loop detector data. University of California transportation center working papers

  102. Noureddin EF (2006) Bayesian and evidential approaches for traffic data fusion: methodological issues and case study. Transportation research board 85th annual meeting, Paper CD ROM 061510. Washington

  103. Qin J, He Y, Ni L (2014) Quantitative efficiency evaluation method for transportation networks. Res J Appl Sci Eng Technol 7(5):944949

    Article  Google Scholar 

  104. Hosseini SH, Moshiri B, RahimiKian A, Araabi BN (2012) Short-term traffic flow forecasting by mutual information and artificial neural networks. In: IEEE international conference on industrial technology, vol 55, pp 1136–1141. IEEE

  105. Piles M, Gianola D, Varona L, Blasco A (2003) Bayesian inference about parameters of a longitudinal trajectory when selection operates on a correlated trait. J Anim Sci 81(11):271424

    Article  Google Scholar 

  106. Vlahogianni EI, Karlaftis MG, Golias JC (2014) Short-term traffic forecasting: where we are and where were going. Transp Res Part C Emerg Technol 43:319

    Article  Google Scholar 

  107. Barimani N, Moshiri B, Teshnehlab M (2012) State space modeling and shortterm traffic speed prediction using kalman filter based on ANFIS. Int J Eng Technol 4(2):116–120

    Article  Google Scholar 

  108. Jiang R, Hu MB, Jia B, Wang R, Wu QS (2007) Spatiotemporal congested traffic patterns in macroscopic version of the kernerklenov speed adaptation model. Phys Lett A 365(1):69

    Google Scholar 

  109. Chen SY, Qu GF, Wang XH, Zhang HZ (2004) Traffic flow forecasting based on grey neural network model. In: International conference on machine learning and cybernetics vol 2, pp 1275–1278. IEEE

  110. Yoon B, Chang H (2014) Potentialities of data-driven nonparametric regression in urban signalized traffic flow forecasting. J Transp Eng 140(7):04014027

    Article  Google Scholar 

  111. Ishak S, AlDeek H (2002) Performance evaluation of short-term timeseries traffic prediction model. J Transp Eng 128(6):490498

    Article  Google Scholar 

  112. Sun L, Yang J, Mahmassani H (2008) Travel time estimation based on piecewise truncated quadratic speed trajectory. Transp Res Part A 42(1):173186

    Google Scholar 

  113. Feng XY, Yan YH, Bing SU, Li ZH (2012) Traffic flow distribution models based on time and path preference and inducement strategy. Syst Eng Theory Pract 32(10):23062314

    Google Scholar 

  114. Lint JWCV, Hoogendoorn SP (2010) A robust and efficient method for fusing heterogeneous data from traffic sensors on freeways. Comput Aided Civ Infrastruct Eng 25(8):596–612

    Article  Google Scholar 

Download references

Acknowledgements

Our deepest gratitude goes to the anonymous reviewers for their careful work and thoughtful suggestions that have helped improve this paper substantially. And also, special gratitude goes to the editors and staffs of the journal, thanks for all your understanding, patience and guidance during the whole process; we are very grateful for your contributions on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyu Zhou.

Additional information

This work was supported by the National Natural Science Foundation of China [Grant No. 61602028]. Beijing philosophy and social science program [Grant No. 15JGC166], and the Fundamental Research Funds for the Central Universities [Grant No. 2015jbwy007].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Hirasawa, K. Spatiotemporal traffic network analysis: technology and applications. Knowl Inf Syst 60, 25–61 (2019). https://doi.org/10.1007/s10115-018-1225-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-018-1225-7

Keywords

Navigation