Skip to main content
Log in

Discovering fortress-like cohesive subgraphs

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Morris (Rev Econ Stud 67:57–78, 2000) defines the \(p\)-cohesion by a connected subgraph in which every vertex has at least a fraction p of its neighbors in the subgraph, i.e., at most a fraction (\(1-p\)) of its neighbors outside. We can find that a \(p\)-cohesion ensures not only inner-cohesiveness but also outer-sparseness. The textbook on networks by Easley and Kleinberg  (Networks, Crowds, and Markets - Reasoning About a Highly Connected World, Cambridge University Press, 2010) shows that \(p\)-cohesions are fortress-like cohesive subgraphs which can hamper the entry of the cascade, following the contagion model. Despite the elegant definition and promising properties, to our best knowledge, there is no existing study on \(p\)-cohesion regarding problem complexity and efficient computing algorithms. In this paper, we fill this gap by conducting a comprehensive theoretical analysis on the complexity of the problem and developing efficient computing algorithms. We focus on the minimal \(p\)-cohesion because they are elementary units of \(p\)-cohesions and the combination of multiple minimal \(p\)-cohesions is a larger \(p\)-cohesion. We demonstrate that the discovered minimal \(p\)-cohesions can be utilized to solve the MinSeed problem: finding a smallest set of initial adopters (seeds) such that all the network users are eventually influenced. Extensive experiments on 8 real-life social networks verify the effectiveness of this model and the efficiency of our algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Alimonti P, Kann V (1997) Hardness of approximating problems on cubic graphs. In CIAC, pages 288–298

  2. O. Amini, D. Peleg, S. Pérennes, I. Sau, S. Saurabh. On the approximability of some degree-constrained subgraph problems. Discrete Applied Mathematics, 160(12), 1661–1679, 2012

    Article  MathSciNet  Google Scholar 

  3. Arora A, Galhotra S, Ranu S (2017) Debunking the myths of influence maximization: an in-depth benchmarking study. In SIGMOD, pages 651–666

  4. Bakshy E, Karrer B, Adamic LA (2009) Social influence and the diffusion of user-created content. In ACM Conference on Electronic Commerce, pages 325–334

  5. N. Barbieri, F. Bonchi, E. Galimberti, F. Gullo. Efficient and effective community search. Data Min. Knowl. Discov., 29(5):1406–1433, 2015

    Article  MathSciNet  Google Scholar 

  6. Batagelj V, Zaversnik M (2003) An o(m) algorithm for cores decomposition of networks. CoRR, cs.DS/0310049

  7. C. Bron, J. Kerbosch. Finding all cliques of an undirected graph (algorithm 457). Commun. ACM, 16(9), 575–576, 1973

    Article  Google Scholar 

  8. Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In IV, Fogelman-Soulié F, Flach PA, and Zaki MJ editors, SIGKDD, pages 199–208. ACM

  9. Cohen J (2008) Trusses: Cohesive subgraphs for social network analysis. National Security Agency Technical Report, 16

  10. Cui W, Xiao Y, Wang H, Wang W. (2014) Local search of communities in large graphs. In SIGMOD, pages 991–1002

  11. Danisch M, Balalau OD, Sozio M (2008) Listing k-cliques in sparse real-world graphs. In WWW, pages 589–598

  12. Easley DA, Kleinberg JM (2010) Networks, Crowds, and Markets - Reasoning About a Highly Connected World. Cambridge University Press

  13. Epasto A, Lattanzi S, Sozio M (2010) Efficient densest subgraph computation in evolving graphs. In WWW, pages 300–310

  14. Y. Fang, K. Yu, R. Cheng, L. V. S. Lakshmanan, X. Lin. Efficient algorithms for densest subgraph discovery. PVLDB, 12(11), 1719–1732, 2019

    Google Scholar 

  15. H. Fernau, J. A. Rodríguez-Velázquez. A survey on alliances and related parameters in graphs. EJGTA, 2(1), 70–86, 2014

    Article  MathSciNet  Google Scholar 

  16. Fish B, Bashardoust A, Boyd D, Friedler SA, Scheidegger C, Venkatasubramanian S (2019) Gaps in information access in social networks? In WWW, pages 480–490

  17. Fricke G, Hedetniemi ST, Jacobs DP (1998) Independence and irredundance in k-regular graphs. Ars Comb., 49

  18. Kempe D, Kleinberg JM, (2003) É. Tardos. Maximizing the spread of influence through a social network. In SIGKDD, pages 137–146

  19. D. Kempe, J. M. Kleinberg, É. Tardos. Maximizing the spread of influence through a social network. Theory of Computing, 11:105–147, 2015

    Article  MathSciNet  Google Scholar 

  20. J. M. Kumpula, M. Kivelä, K. Kaski, J. Saramäki. Sequential algorithm for fast clique percolation. Physical Review E, 78(2):026109, 2008

    Article  Google Scholar 

  21. Laishram R, Sariyüce AE, Eliassi-Rad T, Pinar A, Soundarajan S (2018) Measuring and improving the core resilience of networks. In WWW, pages 609–618

  22. Leskovec J, Krevl A (2014) SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data

  23. Ley M (2002) The dblp computer science bibliography: evolution, research issues, perspectives. String processing and information retrieval. http://dblp.uni-trier.de

  24. C. Li, F. Zhang, Y. Zhang, L. Qin, W. Zhang, X. Lin. Efficient progressive minimum k-core search. PVLDB, 13(3), 362–375, 2019

    Google Scholar 

  25. Liu B, Yuan L, Lin X, Qin L, Zhang W, Zhou J (2019) Efficient (\(\alpha \), \(\beta \))-core computation: an index-based approach. In WWW, pages 1130–1141

  26. R. D. Luce, A. D. Perry. A method of matrix analysis of group structure. Psychometrika, 14(2), 95–116, 1949

    Article  MathSciNet  Google Scholar 

  27. Maehara T, Suzuki H, Ishihata M (2017) Exact computation of influence spread by binary decision diagrams. In WWW, pages 947–956

  28. Mihara S, Tsugawa S, Ohsaki H (2015) Influence maximization problem for unknown social networks. In Pei J, Silvestri F, and Tang J, editors, ASONAM, pages 1539–1546. ACM, 2015

  29. S. Morris. Contagion. The Review of Economic Studies, 67(1), 57–78, 2000

    Article  MathSciNet  Google Scholar 

  30. M. E. Newman. Modularity and community structure in networks. Proceedings of the national academy of sciences, 103(23):8577–8582, 2006

    Article  Google Scholar 

  31. Sariyüce AE, Seshadhri C, Pinar A, Ü. V. Çatalyürek (2015) Finding the hierarchy of dense subgraphs using nucleus decompositions. In WWW, pages 927–937

  32. H. Seba, S. Lagraa, H. Kheddouci. Alliance-based clustering scheme for group key management in mobile ad hoc networks. The Journal of Supercomputing, 61(3), 481–501, 2012

    Article  Google Scholar 

  33. S. B. Seidman. Network structure and minimum degree. Social networks, 5(3):269–287, 1983

    Article  MathSciNet  Google Scholar 

  34. S. B. Seidman, B. L. Foster. A graph-theoretic generalization of the clique concept*. Journal of Mathematical sociology, 6(1):139–154, 1978

    Article  MathSciNet  Google Scholar 

  35. Tang J, Tang X, Xiao X, Yuan J (2018) Online processing algorithms for influence maximization. In SIGMOD, pages 991–1005

  36. E. Tomita, A. Tanaka, H. Takahashi. The worst-case time complexity for generating all maximal cliques and computational experiments. Theor. Comput. Sci., 363(1):28–42, 2006

    Article  MathSciNet  Google Scholar 

  37. J. Ugander, L. Backstrom, C. Marlow, J. Kleinberg. Structural diversity in social contagion. PNAS, 109(16), 5962–5966, 2012

    Article  Google Scholar 

  38. J. Wang, J. Cheng. Truss decomposition in massive networks. PVLDB, 5(9), 812–823, 2012

    Google Scholar 

  39. C. I. Wood, I. V. Hicks. The minimal k-core problem for modeling k-assemblies. The Journal of Mathematical Neuroscience, 5(1):14, 2015

    Article  MathSciNet  Google Scholar 

  40. Yelp (2015) Yelp Dataset Challenge: Discover what insights lie hidden in our data. https://www.yelp.com/dataset/challenge

  41. Yero IG, Rodríguez-Velázquez JA (2013) Defensive alliances in graphs: a survey. http://arxiv.org/abs/1308.2096

  42. Zarezade A, Khodadadi A, Farajtabar M, Rabiee HR, Zha H (2017) Correlated cascades: Compete or cooperate. In AAAI, pages 238–244

  43. Zhang F, Yuan L, Zhang Y, Qin L, Lin X, Zhou A (2018) Discovering strong communities with user engagement and tie strength. In DASFAA, pages 425–441

  44. Zhang F, Zhang Y, Qin L, Zhang W, Lin X (2018) Efficiently reinforcing social networks over user engagement and tie strength. In ICDE, pages 557–568

  45. Zhang P, Chen W, Sun X, Wang Y, Zhang J (2014) Minimizing seed set selection with probabilistic coverage guarantee in a social network. In SIGKDD, pages 1306–1315

Download references

Acknowledgements

Fan Zhang is supported by National Natural Science Foundation of China under Grant 62002073 and Guangzhou Basic and Applied Basic Research Foundation under Grant 202102020675. Ying Zhang is supported by ARC DP180103096 and FT170100128. Lu Qin is supported by ARC DP160101513. Wenjie Zhang is supported by ARC DP180103096. Xuemin Lin is supported by NSFC61232006, ARC DP180103096, DP170101628 and the National Key R&D Program of China under grant 2018YFB1003504.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, F., Zhang, Y. et al. Discovering fortress-like cohesive subgraphs. Knowl Inf Syst 63, 3217–3250 (2021). https://doi.org/10.1007/s10115-021-01624-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-021-01624-x

Keywords

Navigation