Skip to main content
Log in

An overview of cluster-based image search result organization: background, techniques, and ongoing challenges

  • Survey Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Digital photographs and visual data have become increasingly available, especially on the Web considered as the largest image database to date. However, the value of multimedia content depends on how easy it is to search and manage. Thus, the need to efficiently index, store, and retrieve images is becoming evermore important, particularly on the Web where existing image search and retrieval techniques do not seem to keep pace. Most existing solutions return a large quantity of search results ranked by their relevance to the user query. This can be tedious and time-consuming for the user, since the returned results usually contain multiple topics mixed together, and the user cannot be expected to have the time to scroll through the huge result list. A possible solution is to better organize the output information (prior or after query refinement), providing a means to facilitate the assimilation of the search results. In this context, image search result organization (ISRO) has been recently investigated as an effective and efficient solution to improve image retrieval quality on the Web. Most methods in this context exploit image clustering as a methodology capable of topic extraction and rendering semantically more meaningful results to the user. This survey paper provides a concise and comprehensive review of the methods related to cluster-based ISRO on the Web. It is made of four logical parts: First, we provide a glimpse on image information retrieval. Second, we briefly cover the background on ISRO. Third, we describe and categorize various steps involved in cluster-based ISRO, ranging over image representation, similarity computation, image clustering or grouping, and cluster-based search result visualization. Fourth, we briefly summarize and discuss ongoing research challenges and future directions, including high-dimensional feature indexing, joint word image modeling and implicit semantics, describing images based on aesthetics, automatic similarity metric learning, combining ensemble clustering methods, performing adaptive clustering, allowing dynamic trade-off between clustering quality and efficiency, diversifying image search results, integrating user feedback, and adapting results to mobile devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://www.images.google.com.

  2. www.bing.com/images.

  3. https://www.Flickr.com.

  4. https://imgur.com/.

  5. With respect to.

  6. The standard TF-IDF (Term Frequency – Inverse Document Frequency) approach (or one of its variants) from the vector space model [183] is usually used, describing the number of times a term appears in a high-level feature (TF) compared with the number of times it appears in all entries of the feature (IDF).

  7. http://www.yippy.com.

  8. http://carrot2.org.

  9. http://www.iboogie.com.

  10. A large number of open-source tagged image datasets can be recently found online, e.g., https://www.kaggle.com/datasets and https://opensource.google/projects/open-images-dataset.

  11. http://trends.google.com/.

  12. https://www.photo.net/.

References

  1. Aggarwal CC and Reddy CK Data Clustering: Algorithms and Applications. CRC Press, ISBN 978-1-46-655821-2, p. 49, 2014.

  2. Ahmad A, Khan S (2019) Survey of state-of-the-art mixed data clustering algorithms. IEEE Access 7:31883–31902

    Google Scholar 

  3. Ai L et al (2013) High-dimensional indexing technologies for large-scale content-based image retrieval: a review. Sci J Zhejiang Univ 14(7):505–520

    Google Scholar 

  4. Alamdar F, Keyvanpour M (2014) Effective browsing of image search results via diversified visual summarization by clustering and refining clusters. SIViP 8(4):699–721

    Google Scholar 

  5. Algergawy A et al (2011) XML data clustering: an overview. ACM Comput Surv 43(4):25

    MATH  Google Scholar 

  6. Algergawy A, Nayak R, Saake G (2010) Element similarity measures in XML schema matching. Elsevier Inf Sci 180(24):4975–4998

    Google Scholar 

  7. Alguliyev R, Aliguliyev R, Sukhostat L (2020) Weighted consensus clustering and its application to big data. Expert Syst Appl 150:113294

    Google Scholar 

  8. Alqurashi T and Wang W A New Consensus Function based on Dual-similarity Measurements for Clustering Ensemble. In: International Conference of Data Science and Advanced Analytics (DSAA'15), 2015. pp. 149–155.

  9. Alqurashi T, Wang W (2019) Clustering ensemble method. Int J Mach Learn Cybern 10:1227–1246

    Google Scholar 

  10. Alzubi A, Abuarqoub A (2020) Deep learning model with low-dimensional random projection for large-scale image search. Eng Sci Technol 32(911):920

    Google Scholar 

  11. Andre P. et al. Designing novel image search interfaces by understanding unique characteristics and usage. In: IFIP TC13 International Conference on Human-Computer Interaction (INTERACT), 2009. (2): 340–353.

  12. Atilgan C, Tezel B, Nasiboglu E (2021) Efficient implementation and parallelization of fuzzy density-based clustering. Inf Sci 575:454–467

    MathSciNet  Google Scholar 

  13. Ayoub I, Codouni K, and Tekli J, Personalized social image organization, visualization, and querying tool using low- and high-level Features. In: IEEE Inter. Conf. on Computational Science and Engineering (CSE'16), 2016. Paris, France.

  14. Azar D, Fayad K, and Daoud C A Combined ant colony optimization and simulated annealing algorithm to assess stability and fault-proneness of classes based on internal software quality attributes. Int J Artif Intell (ISSN 0974–0635), 2016. 14:2.

  15. Azar D, Vybihal J (2011) An ant colony optimization algorithm to improve software quality predictive models. J Inf Softw Technol 53(4):388–393

    Google Scholar 

  16. Bagherjeiran A, et al. Adaptive Clustering: Obtaining Better Clusters Using Feedback and Past Experience. In: IEEE International Conference on Data Mining (ICDM'05), 2005. pp. 565–568.

  17. Baimuratov I et al. A bayesian information criterion for unsupervised learning based on an objective prior. In: International Conference on Computational Science and Its Applications (ICCSA), 2019. pp. 707–716.

  18. Balzanella A, Verde R (2020) Histogram-based clustering of multiple data streams. Knowl Inf Syst 62(1):203–238

    MATH  Google Scholar 

  19. Banerjee A et al (2005) Clustering with bregman divergences. J Mach Learn Re (JMLR) 6:1705–1749

    MathSciNet  MATH  Google Scholar 

  20. Barghout L, Hypernym and Spatial-Taxon Hierarchy. A Cognitive Informatics & Fuzzy Logic Approach to Combining Linguistic and Image Taxonomies. In: IEEE International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC), 2018. pp. 575–582

  21. Barnard K, Forsyth DA (2001) Learning the semantics of words and pictures. Proc IEEE Conf Comp Vis 2:408–415

    Google Scholar 

  22. Beliakov G, Pradera A, Calvo T (2007) Aggregation functions: a guide for practitioners. In: Studies in fuzziness and soft computing, vol 221. Springer, p 381

    Google Scholar 

  23. Bezdek J (1981) Pattern recognition with fuzzy objective function algorithms (advanced applications in pattern recognition), 1st edn. Plenum Press, NY, p 256

    Google Scholar 

  24. Bezdek JC, Pal NR (1998) Some new indexes of cluster validity. IEEE Trans Syst Man Cybernet NPART B: CYBERNETICS 28(3):301–315

    Google Scholar 

  25. Bhardwaj S, Pandove G, Dahiya PK (2020) An extreme learning machine-relevance feedback framework for enhancing the accuracy of a hybrid image retrieval system. Int J Inter Multimed Artif Intell 6(2):1–13

    Google Scholar 

  26. Black JA Jr,Kahol K, Kuchi P, Fahmy G and Panchanathan S, Characterizing the high-level content of natural images using lexical basis functions. Human Vision Electron Imag VIII, SPIE, 2003. pp. 378-391

  27. Boberg J, Salakoski T (1993) General formulation and evaluation of agglomerative clustering methods with metric and non-metric distances. Pattern Recogn 26:1395–1406

    Google Scholar 

  28. Bobrowski L (2012) K-Lines clustering with convex and piecewise linear (CPL) functions. IFAC Proc Volumes 45(2):108–111

    Google Scholar 

  29. Bosch A, Zisserman A, and Munoz X, Image Classifcation using Random Forests and Ferns. In: IEEE International Conference on Computer Vision (ICCV'07), 2007. pp. 1–8.

  30. Boteanu B., Mironica I., and Ionescu B., Hierarchical Clustering Pseudo-Relevance Feedback for Social Image Search Result Diversification. International Conference on Content-Based Multimedia Indexing (CBMI'15) 2015. pp. 1–6.

  31. Bradley P, Mangasarian O, and Street W 1997 Clustering via Concave Minimization. In: MC Mozer, MI Jordan, and T Petsche (eds) Advances in Neural Information Processing Systems, vol. 9 Cambridge, Massachusetts: MIT Press, pp. 368–374.

  32. Brin S, Page L (1998) The anatomy of a large scale hypertextual web search engine. Comp Netw ISDN Syst 30(1–7):107–117

    Google Scholar 

  33. Cai D, et al, Hierarchical Clustering of WWW Image Search Results using Visual, Textual and Link Information. In: Proceedings of the International ACM Multimedia Conference, 2004. pp. 952–959.

  34. Cai D, He X, Li Z, MA W-Y and Wen JR, Hierarchical Clustering of WWW Image Search Results using Visual, Textual and Link Information. In: Proceedings of the International ACM Multimedia Conference, 2004. pp. 952–959.

  35. Cai D, He X, Wen JR and Ma WY, VIPS: a vision-based page segmentation algorithm. microsoft technical Report, MSR-TR-2003–79, 2003.

  36. Cai D, Yu S, Wen JR and Ma WY Block-level Link Analysis. In: Proceedings of the International ACM SIGIR Conference, 2004. pp. 440–447.

  37. Cai Z, et al, Wikification via Link Co-occurrence. In: International Conference on Information and Knowledge Management (CIKM), 2013. pp. 1087–1096.

  38. Campello R, Moulavi D, and Sander J, Density-based clustering based on hierarchical density estimates. In: Pacific-Asia conference on knowledge dis-covery and data mining (PAKDD'13), 2013. 2013: 160–172.

  39. Campello R et al (2013) A framework for semi-supervised and unsupervised optimal extraction of clusters from hierarchies. Data Min Knowl Disc 27(3):344

    MathSciNet  MATH  Google Scholar 

  40. Campello R et al (2015) Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Trans Knowl Discov Data 10(1):1–51

    Google Scholar 

  41. Can F (1993) Incremental clustering for dynamic information processing. ACM Trans Inf Syst 11(2):143–164

    MathSciNet  Google Scholar 

  42. Carpineto C and Romano G, Optimal Meta Search Results Clustering. In: 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 2010. pp. 170–177.

  43. Carpineto C, de Mori R, Romano G, Bigi B (2001) An information-theoretic approach to automatic query expansion. ACM Trans Inf Syst (TOIS) 19(1):1–27

    Google Scholar 

  44. Chang E, Goh K, Sychay G, Wu G (2003) CBSA: content-based soft annotation for multimedia image retrieval using bayes point machines. IEEE Trans Circuits Syst Video Technol Special Issue Conceptand Dynam Aspects Multimed Concent Descrip 13:26–38

    Google Scholar 

  45. Chang S F, Chen W, and Sundaram H, Semantic visual templates: linking visual features to semantics. In: International Conference on Image Processing (ICIP), Workshop on Content Based Video Search and Retrieval, 1998. Vol 3, pp. 531–534.

  46. Chen T and Luo J, Expressing Objects Just Like Words: Recurrent Visual Embedding for Image-Text Matching. In: AAAI Conference on Artificial Intelligence (AAAI'20), 2020. pp. 10583–10590.

  47. Chen Y, Wang J, and Krovetz R, Content-based Image Retrieval by Clustering. In: Proceedings of the ACM International Conference on Multimedia Information Retrieval (MIR'03), 2003. pp. 193–200.

  48. Chua TS, Zhao Y, Chaisorn L, Koh C-K, Yang H, Xu H and Tian Q, TREC 2003 Video Retrieval and Story Segmentation Task at NUS PRIS., 2003. http://www-nlpir.nist.gov/projects/tv.pubs.org.

  49. Chung F., Spectral Graph Theory. Regional Conference Series in Mathematics, 1997. American Mathematical Society, pp. 212.

  50. Cox IJ, Miller ML, Minka TP, Papathomas TV, Yianilos PN (2000) The bayesian image retrieval system, pichunter: theory, implementation, and psychophisical experiments. IEEE Trans Image Process 9(1):20–37

    Google Scholar 

  51. Cutting DR, Karger DR, Pedersen JO and Tukey JW, Scatter/Gather: a cluster-based approach to browsing large document collections. In: Proceedings of the ACM SIGIR International Conference on Research and Development in Information Retrieval, 1992. pp. 318–329.

  52. Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences and trends of the new age. ACM Comp Surv 40(2):1–60

    Google Scholar 

  53. Deerwester S, Dumais S, Furnas G, Landauer T, Harshman R (1990) Indexing by latent semantic analysis. J Am Soc Inf Scie Special Topic XML/IR 41(6):391–407

    Google Scholar 

  54. Deselaers T, et al, Jointly optimising relevance and diversity in image retrieval. In: ACM International Conference on Image and Video Retrieval (CIVR'09), 2009. pp. 1–8.

  55. Desgraupes B., Clustering Indices—Package clusterCrit for R. University Paris Ouest, Lab Modal'X, 2017. 33 p.

  56. Dhanalakshmi K, Rajamani V (2013) An intelligent mining system for diagnosing medical images using combined texture-histogram features. Int J Imag Syst Technol 23(2):194–203

    Google Scholar 

  57. Dias G, Cleuziou G, and Machado D, Informative polythetic hierarchical ephemeral clustering. Web Intelligence, 2011. pp. 104–111.

  58. Ding H, Liu J, and Lu H, Hierarchical clustering-based navigation of image search results. ACM Multimedia, 2008. pp. 741–744.

  59. Dittenbach M, Merkl D, and Rauber A, Using growing hierarchical self-organizing maps for document classification. In: The European Symposium on Artificial Neural Networks (ESANN), 2000. pp. 7–12.

  60. Do H, Rahm E (2007) Matching large schemas: approaches and evaluation. Inf Syst 32(6):857–885

    Google Scholar 

  61. Domshlak C, Gal A, Roitman H (2007) Rank aggregation for automatic schema matching. IEEE Trans Knowl Data Eng 19(4):538–553

    Google Scholar 

  62. Durmaz O, Bilge HS (2019) Fast image similarity search by distributed locality sensitive hashing. Pattern Recognit Lett 128:361–369

    Google Scholar 

  63. Everitt BS, Landau S, Leese M (2011) Cluster analysis, vol 5. Arnold, London, p 346

    MATH  Google Scholar 

  64. Fadzli SA, Setchi R (2012) Concept-based indexing of annotated images using semantic DNA. J Eng Appl Artif Intell 25(8):1644–1655

    Google Scholar 

  65. Fares M et al (2019) Unsupervised word-level affect analysis and propagation in a lexical knowledge Graph. Elsevier Knowl-Based Syst 165:432–459

    Google Scholar 

  66. Favory X, Font F, and Serra X, Search Result Clustering in Collaborative Sound Collections. In: International Conference on Multimedia Retrieval (ICMR'20) 2020. pp. 207–214.

  67. Feng H, Shi R and Chua T-S A Bootstrapping Framework for Annotating and Retrieving WWW Images. In: Proceedings of the International ACM Multimedia Conference, 2004. pp. 960–967.

  68. Fergus R, et al. Learning object categories from google's image search. In: IEEE international conference on computer vision (ICCV), 2005. pp. 1816–1823.

  69. Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972–976

    MathSciNet  MATH  Google Scholar 

  70. Fu L, Medico E (2007) FLAME: a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinform 8(3):1–15

    Google Scholar 

  71. Gali N, Tabarcea A, and Fränti P, Extracting Representative Image from Web Page.In: International Conference on Web Information Systems and Technologies (WEBIST), 2015. pp. 411–419.

  72. Gao B, Liu T-Y, Qin T, Zheng X, Cheng Q-S and Ma W-Y, Web Image Clustering by Consistent Utilization of Visual Features and Surrounding Texts. In: Proceedings of the International ACM Multemedia Conference, 2005. pp. 112–121.

  73. Gao Y, et al, A Novel approach for filtering junk images from google search results. In: Conference on Multimedia Modeling (MMM'08), 2008. 1–12.

  74. Giouvanakis S and Kotropoulos C, Saliency map driven image retrieval combining the bag-of-words model and PLSA. In: international conference on digital signal processing (DSP'14), 2014. pp. 280–285.

  75. Gomes HM, Barddal JP, Enembreck F, Bifet A (2017) a survey on ensemble learning for data stream classification. ACM Comput Surv 50(2):1–36

    Google Scholar 

  76. Grauman K and Darrel T, The pyramid match kernel: discriminative classification with sets of image features. In: Proceedings of the internation conference on computer Vision (ICCV), 2005. pp. 1458–1465.

  77. Griffin G and Perona P Learning and Using Taxonomies for Fast Visual Categorization. IEEE CVPR 2008, 2008.

  78. Griffiths A, Luckhurst HC, Willett P (1986) Using inter-document similarity information in document retrieval systems. J Am Soc Inf Sci 37:3–11

    Google Scholar 

  79. Guha S, et al, Clustering Data Streams. In: Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS), 2000. pp. 359–366.

  80. Gupta G, Ghosh J (2008) Bregman bubble clustering a robust framework for mining dense clusters. ACM Trans Knowl Discov Data 2(2):1–49

    MATH  Google Scholar 

  81. Han S et al (2020) Extracting representative images of tourist attractions from flickr by combining an improved cluster method and multiple deep learning models. ISPRS Int J Geo Inf 9(2):81

    Google Scholar 

  82. Friedman J, Hastie T, Tibshirani R (2008) The elements of statistical learning: Data Mining, Inference, and Prediction, vol 2. Spinger, New York, p 763

    MATH  Google Scholar 

  83. He XG, Roqueiro D, Borgwardt K (2020) Kernel conditional clustering and kernel conditional semi-supervised learning. Knowl Inf Syst 62(3):899–925

    Google Scholar 

  84. He X, Cai D, Wen JR, Ma WY and Zhang HJ ImageSeer: clustering and searching WWW images using link and page layout analysis. microsoft technical report—MSR-TR-2004-38, 2004.

  85. He X, Ma WY, Zhang HJ (2003) ImageRank: spectral techniques for structural analysis of image database. IEEE Int Conf Multimed Expo 2:25–28

    Google Scholar 

  86. Hearst MA, Karger DR and Pedersen JO, Scatter/Gather as a tool for the navigation of retrieval results. In: The AAAI symposium on AI appliations in knowledge navigation and retrieval, 1995. Cambridge, MA.

  87. Hirota M et al (2012) A robust clustering method for missing metadata in image search results. J Inf Process 20(3):537–547

    Google Scholar 

  88. Hirota M.; Yokoyama S.; Fukuta N. and Ishikawa H., Constraint-based Clustering of Image Search Results using Photo Metadata and Low-level Image Features. Proceedings of the 9th IEEE/ACIS International Conference on Computer and Information Science (ICIS'10), 2010.

  89. Hofmann T (2017) Probabilistic latent semantic indexing. SIGIR Forum 51(2):211–218

    Google Scholar 

  90. Hopfield JJ, The Effectiveness of Neural Computing. IFIP World Computer Congress (WCC'89), 1989. 402–409.

  91. Hossain S, Lee D (2019) Deep learning-based real-time multiple-object detection and tracking from aerial imagery via a flying robot with gpu-based embedded devices. Sensors 19(15):3371

    Google Scholar 

  92. Hua KA, Vu K and Oh JH In: Proceedings of the 7th ACM Intertional Multimedia Conference (ACM MM'99) pp. 225–234, SamMatch: A flexible and efficient sampling-based image retrieval technique for large image databases

  93. Huang Z et al (2010) Mining near-duplicate graph for cluster-based re-ranking of web video search results. ACM Trans Inf Syst (TOIS). 28:1–27

    Google Scholar 

  94. Hussain S, Haris M (2019) A K-means based co-clustering (kCC) algorithm for sparse. High-Dimens Data Expert Syst Appl 118:20–34

    Google Scholar 

  95. Huu Q et al (2019) Graph-based semisupervised and manifold learning for image retrieval with svm-based relevant feedback. J Intell Fuzzy Syst 37(1):711–722

    Google Scholar 

  96. Ionescu B et al. Retrieving diverse social images at MediaEval 2013: objectives, dataset and evaluation. In: working notes proceedings mediaEval 2013Workshop, Eds. Larson M. et al., co-located with ACM multimedia, Barcelona, Spain, 2013. Vol. 1043.

  97. Ionescu B et al (2015) Div150Cred: a social image retrieval result diversification with user tagging credibility dataset. ACM Multimed Syst (MMSys). https://doi.org/10.1145/2713168.2713192

    Article  Google Scholar 

  98. Ionescu B et al (2014) Result diversification in social image retrieval: a benchmarking framework. Multimed Tools Appl (MTAP) 75(2):1301–1331

    Google Scholar 

  99. Itsubo T, Koibuchi M, and MH Amano H 2020 Accelerating deep learning using multiple GPUs and FPGA-Based 10GbE Switch. In: international euromicro conference on parallel, distributed and network-based processing (PDP'20), 2020. pp. 102–109.

  100. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

    Google Scholar 

  101. Jardine N, van Rijsbergen CJ (1971) The use of hierarchical clustering in information retrieval. Inf Storage Retriev 7:217–240

    Google Scholar 

  102. Jeon J, Lavrenko V and Manmatha R, Automatic image annotation and retreival using cross media relevance models. In: Proceedings of the International ACM SIGIR Conference, 2003. pp. 119–126.

  103. Ji Z, et al. A survey of personalised image retrieval and recommendation. In: National Conference on Theoretical Computer Science (NCTCS'17) 2017. pp. 233–247.

  104. Jia Y et al, Finding image exemplars using fast sparse affinity propagation. In: Proceedings of the ACM Multimedia, 2008. pp. 639–642.

  105. Jiang C, Liu J et al (2018) Implicit semantics based metadata extraction and matching of scholarly documents. J Database Manage 29(2):1–22

    MathSciNet  Google Scholar 

  106. Jiang Q et al (2020) An adaptive CSP and clustering classification for online motor imagery EEG. IEEE Access 8:156117–156128

    Google Scholar 

  107. Jisha KP, An image retrieval technique based on texture features using semantic properties. In: International conference on signal processing image processing & pattern recognition (ICSIPR), 2013. pp. 248 - 252

  108. Joshi D, DR., et al. Aesthetics and Emotions in Images. IEEE Signal Processing Magazine, 2011. 28(5): 94–115.

  109. Kailing K, et al. Efficient similarity search for hierarchical data in large databases. In: proceedings of the international conference on extending database technology, 2004. pp. 676–693.

  110. Kamvar M, et al. Computers and Iphones and Mobile Phones, oh my!: a logs-based comparison of search users on different devices. In: 18th international world wide web conference (WWW), 2009. pp. 801–810.

  111. Kamvar M and Baluja S A Large Scale Study of Wireless Search Behavior: Google Mobile Search. In: Proceedings of the SIGCHI conference on computer human interaction, 2006. pp. 701–709, Montreal, Canada.

  112. Kleinberg J (1999) Authoritative sources in a hyperlinked environment. J ACM 46(5):604–632

    MathSciNet  MATH  Google Scholar 

  113. Kong S, et al, Photo aesthetics ranking network with attributes and content adaptation. In: European Conference on Computer Vision (ECCV'16), 2016. 1:662–679.

  114. Krapac J et al. Improving Web image search results using query-relative classifiers. In: Computer vision and pattern recognition (CVPR), 2010. pp. 1094–1101.

  115. Kriegel HP, Schubert E, Zimek A (2016) The (Black) art of runtime evaluation: are we comparing algorithms or implementations? Knowl Inf Syst 52(2):341

    Google Scholar 

  116. Krishnan A et al (2018) Leveraging semantic resources in diversified query expansion. World Wide Web J 21:1041–1067

    Google Scholar 

  117. Kulkarni S and Verma B, Fuzzy Logic for Texture Queries in CBIR. In: Proceedings of the International Conference on Computational Intelligence and Multimedia Applications (ICCIMA), 2003. pp. 223–226.

  118. Lempel R and Soffer A, PicASHOW: Pictorial Authority Search by Hyperlinks on the Web. In: Proceedings of the 10th International World Wide Web Conference, 2001. pp. 438–448.

  119. Leouski AV and Croft B An Evaluation of Techniques for Clustering Search Results. Technical Report IR-76, 1996. Computer Science Department, University of Massachusetts.

  120. Leow WK and Lai SY 2000 Scale and orientationi-invariant texture matching for image retrieval. In: Pietikainen (Eds) Texture analysis in machine vision. World Scientific, Singapore, pp. 151–163

  121. Li P, Zhang L, and Ma J, Dual-ranking for web image retrieval. CIVR, 2010. pp. 166–173.

  122. Li X et al (2016) Socializing the semantic gap: a comparative survey on image tag assignment refinement and retrieval. ACM Comput Surv 49(1):1–39

    Google Scholar 

  123. Liang S, Sun Z (2008) Sketch retrieval and relevance feedback with biased SVM classification. Pattern Recogn Lett 29:1733–1741

    Google Scholar 

  124. Lin WH Jin R and Hauptmann A, Web image retrieval re-ranking with relevance model. In: Proceedings of the IEEE Conference on Web Intelligence (WIC'03), 2003. pp. 242–249.

  125. Liu B et al (2019) Encrypted data indexing for the secure outsourcing of spectral clustering. Knowl Inf Syst 60(3):1307–1328

    Google Scholar 

  126. Liu F, Picard RW (1996) Periodicity, directionality, and randomness: wold features for image modelling and retrieval. IEEE Trans Pattern Anal Mach Intell 18(7):722–733

    Google Scholar 

  127. Liu G and Lee B, A color-based clustering approach for web image search results. In: International conference on hybrid information Technology (ICHIT'09), 2009. pp. 481–484.

  128. Liu H et al (2013) Landmark FN-DBSCAN: an efficient density-based clustering algorithm with Fuzzy neighborhood. J Adv Comput Intell Intell Inf (JACIII) 17(1):60–73

    Google Scholar 

  129. Liu H, et al, Clustering-based Navigation of Image Search Results on Mobile Devices. In: Myaeng, S-H, Zhou M, Wong K-F, Zhang H-J (eds) AIRS, 2005. 3411: 325–336.

  130. Liu H, Xie X, Tang XO, Li ZW and Ma WY Effective Browsing of Web Image Search Results. In: Proceedings of the ACM SIGMM international workshop on multimedia information retrieval, 2004. pp. 84–90.

  131. Liu M et al (2019) A new local density and relative distance based spectrum clustering. Knowl Inf Syst 61(2):965–985

    Google Scholar 

  132. Liu Y, Zhang D, Lu G and Ma W-Y, Region-based image retrieval with perceptual colors. In: Proceedings of the Pacific-Rim multimedia conference (PCM), 2004. pp. 931–938.

  133. Liu Y et al (2006) A survey of content-based image retrieval with high-level semantics. Pattern Recognit 40(1):262–282

    Google Scholar 

  134. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137

    MathSciNet  MATH  Google Scholar 

  135. Long F, Zhang HJ, Feng DD (2003) Fundamentals of content-based image retrieval. In: Feng D (ed) Multimedia information retrieval and management. Springer, Berlin, pp 1–26

    Google Scholar 

  136. Lozada C et al (2014) Clustering of web search results based on the cuckoo search algorithm and balanced bayesian information criterion. Inf Sci 281:248–264

    Google Scholar 

  137. Lu Y, Cheung Y, Tang Y (2021) Self-adaptive multiprototype-based competitive learning approach: a k-means-type algorithm for imbalanced data clustering. IEEE Trans Cybernet 51(3):1598–1612

    Google Scholar 

  138. Luo B, Wang XG and Tang XO, A world wide web based image search engine using text and image content features. In: Proceedings of IS&T/SPIE Electronic Imaging, 2003.

  139. Ma L et al (2017) Learning efficient binary codes from high-level feature representations for multilabel image retrieval. IEEE Trans Multimed 19(11):2545–2560

    Google Scholar 

  140. Madduma B., R.S 2012 Image retrieval based on high level concept detection and semantic labelling intelligent decision Technologies, 6(3): 187–196.

  141. Manjunath BS (2001) Color and texture descriptors. IEEE Trans Circuits Syst Video Technol (CSVT) 6:703–715

    Google Scholar 

  142. Manjunath BS (2002) Introduction to MPEG-7. Wiley, New York, p 412

    Google Scholar 

  143. Manjunath BS, Ma WY (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):837–842

    Google Scholar 

  144. Marszalek M, Schmid C (2007) Semantic hierarchies for visual object recognition. Comp Vision Pattern Recognit (CVPR). https://doi.org/10.1109/CVPR.2007.383272

    Article  Google Scholar 

  145. Mehrotra R, Gary JE (1995) Similar-shape retrieval in shape data management. IEEE Comput 28(9):57–62

    Google Scholar 

  146. Mezaris V, Kompatsiaris I and Strintzis MG, An ontology approach to object-based image retrieval. In: Proceedings of the International Conference on Image Processing (ICIP). Vol. 2, pp. 511–514,

  147. Miao J, Zhou X, Huang T (2020) Local segmentation of images using an improved fuzzy c-means clustering algorithm based on self-adaptive dictionary learning. Appl Soft Comput 91:106200

    Google Scholar 

  148. Milligan G, Cooper M (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika 50(52):159–179

    Google Scholar 

  149. Moellic PA, Haugeard JE and Pittel guillaume image clustering based on a shared nearest neighbors approach for tagged collections. In: Proceedings of the international conference on image and video retrieval (CIVR), 2008. pp. 269–278.

  150. Moraveji N et al. Analyzing and Searching Broadcast News Video Informedia at TRECVID'03, 2003. http://www-nlpir.nist.gov/projects/tv.pubs.org.

  151. Moreno J and Dias G, Using text-based web image search results clustering to minimize mobile devices wasted space-Interface. In: European conference on information retrieval (ECIR), 2013. pp. 532–544.

  152. Moreno JG and Dias G, Using ephemeral clustering and query logs to organize web image search results on mobile devices. International ACM Workshop on Interactive Multimedia on Mobile and Portable Devices (IMMPD'11), 2011. pp. 33–38.

  153. Morsillo N, Pal C and Nelson R, Mining the web for visual concepts. In: Proceedings of the 9th International Workshop on Multimedia Data Mining (in conjuction with ACM SIGKDD'08), 2008. pp. 18–25. https://dl.acm.org/doi/https://doi.org/10.1145/1509212.1509215

  154. Nguyen GP, Worring M (2008) Interactive access to large image collections using similarity-based visualization. J Vis Lang Comput 19(2):203–224

    Google Scholar 

  155. Nguyen H, Woon Y, Ng W (2015) A survey on data stream clustering and classification. Knowl Inf Syst 45(3):535–569

    Google Scholar 

  156. Niazmardi S, Safari A, and HS Similarity-based multiple kernel learning algorithms for classification of remotely sensed images. IEEE journal of selected topics in applied earth observations and remote sensing, 2017. 10(5): 2012–2021.

  157. Nikolopoulos S et al (2013) High order pLSA for indexing tagged images. Signal Process 93(8):2212–2228

    Google Scholar 

  158. O’Connell C, Kutics A, and Nakagawa A, Layered self-organizing map for image classification in unrestricted domains. international conference on image analysis and processing (ICIAP), 2013. pp 310–319.

  159. Osinski S, Stefanowski J, and Weiss D Lingo: search results clustering algorithm based on singular value decomposition. In: intelligent information systems conference (IIPWM), 2004. pp. 369–378.

  160. Osman T et al (2019) An algorithmic approach to estimate cognitive aesthetics of images relative to ground truth of human psychology through a large user study. J Inf Telecommun 3(2):156–179

    Google Scholar 

  161. Panwong P, Boongoen T, Iam-on N (2020) Improving consensus clustering with noise-induced ensemble generation. Expert Syst Appl 146:113138

    Google Scholar 

  162. Papapanagiotou V, Diou C, Delopoulos A (2016) Improving concept-based image retrieval with training weights computed from tags. ACM Trans Multimed Comput Commun Appl 12(2):1–22

    Google Scholar 

  163. Paramita M, Sanderson M, and Clough P, Diversity in photo retrieval: overview of the imageclefphoto Task 2009. In: Conference and labs of the evaluation forum (CLEF), 2009. pp 45–59.

  164. Park H, Lee J, and Jun C, A K-means-like algorithm for K-medoids clustering and its performance. In: Proceedings of the 36th CIE conference on computers & in-dustrial engineering, 2006. pp. 1222–1231.

  165. Pelleg D and Moore A, X-means: extending k-means with effcient estimation of the number of clusters. In international conference on machine learning (ICML), 2000. pp. 727–734.

  166. Philbin J, Sivic J, Zisserman A (2011) Geometric latent dirichlet allocation on a matching graph for large-scale image datasets. Int J Comput Vision 95(2):138–153

    MathSciNet  MATH  Google Scholar 

  167. Picsearch. http://www.picsearch.com [accessed December 2021].

  168. Popescu A, Mollic P, Kanellos I and Landais R Lightweight web image ReRanking. In: Proceedings of the 17th ACM International conference on multimedia, 2009. pp. 657–660.

  169. Punera K, Rajan S, and Ghosh J, Automatic construction of N-ary tree based taxonomies. In: IEEE international conference on data mining (ICDM) Workshops, 2006. pp. 75–79.

  170. Radu A-L et al A Hybrid Machinecrowd Approach to Photo Retrieval Result Diversification. Multimedia Model, 2014. LNCS 8325:25–36.

  171. Rajendran T, Gnanasekaran T (2019) Multi-level object relational similarity based image mining for improved image search using semantic ontology. Clust Comput 22:3115–3122

    Google Scholar 

  172. Rangan S et al (2017) Inference for generalized linear models via alternating directions and bethe free energy minimization. IEEE Trans Inf Theory 63(1):676–697

    MathSciNet  MATH  Google Scholar 

  173. Recio B et al (2019) A taxonomy generation tool for semantic visual analysis of large corpus of documents. Multimed Tools Appl (MTAP) 78(23):32919–32937

    Google Scholar 

  174. Reddy G, Mukherjee S, Thakur M (2020) Measuring photography aesthetics with deep CNNs. IET Image Proc 14(8):1561–1570

    Google Scholar 

  175. Ren J, Shen Y, and Guo L A Novel image retrieval based on representative colors. In: proceedings of image and vision and computing new Zealand (IVCNZ'03). pp. 102–107.

  176. Rocchio J, Relevance feedback in information retrieval. Smart retrieval system experiments in automatic document Processing, Prentice Hall, Englewood Cliffs NJ, 1971. pp. 313–323.

  177. Rodden K, Basalaj W, Sinclair D and Wood KR Evaluating a visualization of image similarity as a tool for image browsing. In: proceedings of the IEEE symposium on information visualization, 1999. pp. 36–43.

  178. Rodden K, Basalaj W, Sinclair D and Wood KR Does organization by similarity assist image browsing? In: Proceedings of the SIGCHI conference on human factors in computing systems, 2001. pp. 190–197

  179. Rohm M, et al, Subdiv17: a Dataset for investigating subjectivity in the visual diversification of image search results. In: ACM SIGMM Conference on Multimedia Systems (MMSys'18), 2018. pp. 444–449.

  180. Rudinac S, Hanjalic A, Larson MA (2013) Generating visual summaries of geographic areas using community-contributed images. IEEE Trans Multimed 15(4):921–932

    Google Scholar 

  181. Rui Y, Huang TS, Chang SF (1999) Image retrieval: current techniques, promising directions and open issues. Vis Commun Image Represent 10(1):39–62

    Google Scholar 

  182. Rui Y, Huang TS, Ortega M, Mehrotra S (1998) Relevance feedback: a power tool for interactive content-based image retrieval. IEEE Trans Circuits Video Technol 8(5):644–655

    Google Scholar 

  183. Ruocco M, Ramampiaro H (2013) Event-related image retrieval: exploring geographical and temporal distribution of user tags international journal of multimedia. Inf Retrieval 2(4):273–288

    Google Scholar 

  184. Saini M, Susan S (2021) Bag-of-visual-words codebook generation using deep features for effective classification of imbalanced multi-class image datasets. Multimed Tools Appl (MTAP). 80(14):20821–20847

    Google Scholar 

  185. Salah Z et al (2018) A methodology to refine labels in web search results clustering. Int J Comput Intell Syst 12(1):299–310

    MathSciNet  Google Scholar 

  186. Salton G, Mcgill MJ (1983) Introduction to modern information retrieval. McGraw-Hill, Tokio

    MATH  Google Scholar 

  187. Salvador S and Chan P Determining the Number of Clusters/Segments in Hierarchical Clustering/Segmentation Algorithms. In proceedings of the 16th IEEE internationalconference ontools with artificial intelligence (ICTA), 2004. pp. 576–584.

  188. Sanz I. et al. An Entropy-Based Characterization of the Heterogeneity of XML Collections. In: International conference on database and expert systems applications (DEXA'08) Workshops, 2008. pp. 238–242.

  189. Scaiella U et al. Topical Clustering of Search Results. In: 5th ACM international conference on web search and data mining (WSDM). pp. 223–232.

  190. Scholkopf B, Smola AJ, Muller K-R (1998) Kernel principal component analysis. Neural Comput 10(5):1299–1319

    Google Scholar 

  191. Schubert E. et al. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN. ACM Transactions on Database Systems (TODS), 2017. 42(3)::1–21

  192. Sebe N, Tian Q, Lew MS, Huang TS (2008) Similarity matching in computer vision and multimedia. Comp Vision Image Understand. 110(3):309–311

    Google Scholar 

  193. Semaan B et al. Toward enhancing web accessibility for blind users through the semantic web. In: Proceedings of the international conference on signal image technology and internet based systems (SITIS’13), 2013, 2013. Kyoto, Japan, pp. 247–256.

  194. Sethi IK, Coman IL (2001) Mining association rules between low-level image features and high level concepts. Proc SPIE Data Min Knowl Discov 3:279–290

    Google Scholar 

  195. Setia L and Burkhardt H Learning taxonomies in large image databases. In: Proceedings of the ACM SIGIR workshop on multimedia information retrieval, 2007. Amsterdam, Holland.

  196. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell (IEEE TPAMI) 22(8):888–905

    Google Scholar 

  197. Shin Y, Ryo CY, Park J (2014) Automatic extraction of persistent topics from social text streams. World Wide Web J 17(6):1395–1420

    Google Scholar 

  198. Singh C, Kaur K (2016) A fast and efficient image retrieval system based on color and texture features. J Vis Commun Image Represent 41:225–238

    Google Scholar 

  199. Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380

    Google Scholar 

  200. Smith J.R., L.C.S., Decoding image semantics using composite region templates. In: IEEEWorkshop on content-based access of image and video libraries (CBAIVL-98), 1998. pp. 9–13.

  201. Soares V et al (2019) Combining semantic and term frequency similarities for text clustering. Knowl Inf Syst 61(3):1485–1516

    Google Scholar 

  202. Song K, Tian Y, Gao W and Huang T, Diversifying the Image Retrieval Results. In: 14th Annual ACM Inter. Conference on Multimedia, 2006. 707–710.

  203. Sugihara K (2019) Using complex numbers in website ranking calculations: a non-ad hoc alternative to Google’s PageRank. J Softw 14(2):58–64

    Google Scholar 

  204. Sun H, et al 2021 Commodity image classification based on improved bag-of-visual-words model. Complexity. 2021: 5556899–5556899.

  205. Sun J et al (2006) Image retrieval based on color distribution entropy. Pattern Recogn Lett 27:1122–1126

    Google Scholar 

  206. Taddesse FG et al, Semantic-based Merging of RSS Items. World Wide Web Journal: Internet and Web Information Systems Journal Special Issue: Human-Centered Web Science, 2010. 13(1–2): 169–207, Springer Netherlands.

  207. Taddesse FG, et al. Relating RSS News/Items. In: 9th International Conference on Web Engineering (ICWE'09), LNCS, 2009. pp. 44–452.

  208. Takimoto H, Omori F, Kanagawa A (2021) Image aesthetics assessment based on multi-stream CNN architecture and saliency features. Appl Artif Intell 35(1):25–40

    Google Scholar 

  209. Tamura H, Mori S, Yamawaki T (1978) Texture features corresponding to visual perception. IEEE Trans Syst Man Cybern 8(6):460–473

    Google Scholar 

  210. Taneva B, Kacimi Mand Weikum G 2010 Gathering and ranking photos of named entities with high precision, high recall, and diversity. ACM web search and data mining, pp. 431–440.

  211. Tao F, Wang T, Wu J, Lin X (2020) A Novel KA-STAP Method based on mahalanobis distance metric learning. Digital Sig Process 97:102613

    Google Scholar 

  212. Tekli J (2016) An overview on XML semantic disambiguation from unstructured text to semi-structured data: background, applications, and ongoing challenges. IEEE Trans Knowl Data Eng (IEEE TKDE) 28(6):1383–1407

    Google Scholar 

  213. Tekli J et al (2019) SemIndex+: a semantic indexing scheme for structured, unstructured, and partly structured data. Elsevier Knowl-Based Syst 164:378–403

    Google Scholar 

  214. Tekli J et al (2018) Full-fledged semantic indexing and querying model designed for seamless integration in legacy RDBMS. Data Knowl Eng 117:133–173

    Google Scholar 

  215. Tekli J, Chbeir R, and Yétongnon K, A Fine-grained XML structural comparison approach. In: proceedings of the 26th international conference on conceptual modeling (ER), 2007. LNCS 4801, pp. 582–598.

  216. Tekli J., Chbeir R., and Yétongnon K., Structural Similarity Evaluation between XML Documents and DTDs. Proceedings of the 8th International Conference on Web Information Systems Engineering (WISE), 2007. pp. 196–211.

  217. Tekli J, Chbeir R, Yétongnon K (2012) Minimizing user effort in XML grammar matching. Elsevier Inf Sci J 210:1–40

    Google Scholar 

  218. Tekli J, Damiani E, Chbeir R (2012) Using XML-based multicasting to improve web service scalability. Int J Web Serv Res (IJWSR) 9(1):1–29

    Google Scholar 

  219. Tekli J, Chbeir R, Ferri F and Grifoni P, Toward Approximate GML Retrieval Based on Structural and Semantic Characteristics. In: Proceedings of the international conference on web engineering (ICWE'09), 2009. pp. 16–34.

  220. Thompson N, et al. The Computational Limits of Deep Learning. Computing Research Repository (CoRR), 2020. abs/2007.05558.

  221. Tian D (2018) Research on PLSA model based semantic image analysis: a systematic review. J Inf Hid Multimed Signal Process 9(5):1099–1113

    Google Scholar 

  222. Treder M, Mayor-Torres J, and Teufel C, Deriving visual semantics from spatial context: an adaptation of LSA and Word2Vec to generate Object and scene embeddings from images. CoRR abs/2009.09384, 2020.

  223. Trokicic A, Todorovic B (2019) Constrained spectral clustering via multi-layer graph embeddings on a grassmann manifold. Int J Appl Math Comput Sci 29(1):125–137

    MathSciNet  MATH  Google Scholar 

  224. Tsikrika T, Kludas J, Popescu A (2012) Building reliable and reusable test collections for image retrieval: the wikipedia task at imageclef. IEEE Multimedia 19(3):24–33

    Google Scholar 

  225. Tu NA, Khan K, Lee Y (2017) Featured correspondence topic model for semantic search on social image collections. Expert Syst Appl 77:20–33

    Google Scholar 

  226. Van Leuken RH, Garcia L, and Olivares X, Visual diversification of image search restuls. In: proceedings of the international world wide web conference, 2009. pp. 341–350.

  227. Van Leuken RH, Garcia L and Olivares X, Visual diversification of image search restuls. In: Proceedings of the international world wide web conference, 2009. pp. 341–350.

  228. Van Zwol R., Murdock V, Pueyo LG and Ramirez G, Diversifying image search with user generated content. In: Proceedings ot the ACM international conference on multimedia information retrieval, 2008. pp. 67–74.

  229. Vega-Pons S, Ruiz-Shulcloper J (2011) A survey of clustering ensemble algorithms. Int J Pattern Recognit Artif Intell 25(3):337–372

    MathSciNet  Google Scholar 

  230. Vieira M et al. On query result diversification. In: IEEE international conference on data engineering (ICDE'11), 2011. 11(16): 1163–1174.

  231. Villena-Román J, Lana-Serrano S, and González-Cristóbal JC MIRACLE-GSI at ImageCLEFphoto 2009: comparing clustering versus classification for result reranking. CLEF (Working Notes), 5 p., 2009

  232. Vitale D., Ferragina P., and Scaiella U., Classification of Short Texts by Deploying Topical Annotations. In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS, 2012. 7224: 376–387.

  233. Vyas K, Frasincar F (2020) Determining the most representative image on a web page. Inf Sci 512:1234–1248

    Google Scholar 

  234. Wang C, et al. KPML: a novel probabilistic perspective kernel mahalanobis distance metric learning model for semi-supervised clustering. In: International conference on database and expert systems applications (DEXA'20), 2020. 2: 259–274.

  235. Wang H. et al. Context-Based clustering of image search results. Deutsche Jahrestagung für Künstliche Intelligenz (KI), 2009. pp. 153–160.

  236. Wang J, Jia L, Hua XS (2011) Interactive browsing via diversified visual summarization for image search results. Multimed Syst 17(5):379–391

    Google Scholar 

  237. Wang JZ, Li J, Wiederhold G (2001) SIMPLIcity: semantics-sensitive integrated matching for picture libraries. IEEE Trans Pattern Anal Mach Intell 23(9):947–963

    Google Scholar 

  238. Wang Q et al (2020) Robust Fuzzy C-means clustering algorithm with adaptive spatial & intensity constraint and membership linking for noise image segmentation. Appl Soft Comput 92:106318

    Google Scholar 

  239. Wang S, et al IGroup: presenting web image search results in semantic clusters. In: Proceedings of the computer-human interaction Conference, 2007. pp. 587–596.

  240. Wang W et al (2020) Improving multi-histogram-based reversible watermarking using optimized features and adaptive clustering number. IEEE Access 8:134334–134350

    Google Scholar 

  241. Wang X, Chen R, Yan F (2019) High-dimensional data clustering using k-means subspace feature selection. J Netw Intell 4(3):80–87

    Google Scholar 

  242. Wang XJ, Ma WY, He QC and Li X, Grouping web image search results. In: Proceedings of the international acm conference on multimedia (ACM MM'04), 2004. pp. 436–439.

  243. Weinberger K, Slaney M and van Zwol R, Resolving tag ambiguity. In: 16th international conference on multimedia (MM'08), 2008. pp. 111–120,

  244. World Wide Web Consortium. The document object model. http://www.w3.org/DOM 28 May 2009].

  245. Wu C, Chen Y (2020) Adaptive entropy weighted picture fuzzy clustering algorithm with spatial information for image Segmentation. Appl Soft Comput 86:105888

    Google Scholar 

  246. Wu F et al (2014) clustering results of image searches by annotations and visual features. Telemat Inform 31(3):477–491

    Google Scholar 

  247. Wu L, Wang Y (2017) Robust hashing for multi-view data: jointly learning low-rank kernelized similarity consensus and hash functions. Image Vis Comput 57:58–66

    Google Scholar 

  248. Xu XS, Huang TS (2003) Relevance feedback in image retrieval: a comprehensive review. Multimed Syst 8(6):536–544

    Google Scholar 

  249. Yang X et al (2016) Web image search re-ranking with click-based similarity and typicality. IEEE Trans Image Process 25(10):4617–4630

    MathSciNet  MATH  Google Scholar 

  250. Yang Y and Pedersen JO A Comparative Study on Feature Selection in Text Categorization. In: Proceedings of the Fourteenth International Conference on Machine Learning (ICML), 1997. pp. 412–420.

  251. Yi X and Allan J A comparative study of utilizing topic models for information retrieval. In: Proceedings of the 31st European conference on IR research (ECIR'09), 2009. pp. 29–41.

  252. Yin D, et al Ranking relevance in Yahoo search. ACM SIGKDD conference on knowledge discovery and data mining (KDD), 2016, pp. 323–332.

  253. Yu H, Li M, Zhang HJ and Feng J, Color Texture Moments for Content-based Image Retrieval. In: proceedings of the international conference on image processing (ICIP), 2002. pp. 24–28.

  254. Yu J et al (2008) Distance learning for similarity estimation. IEEE Trans Pattern Anal Mach Intell (TPAMI) 30(3):451–462

    Google Scholar 

  255. Yu J, et al, Integrating Relvance Feedback in Boosting for Content-based Image Retrieval. In: IEEE international conference on acoustics, speech and signal processing (ICASSP'07), 2007. pp. 965–968.

  256. Yuan J, Luo J, Wu Y (2010) Mining compositional features from gps and visual cues for event recognition in photo collections. IEEE Trans Multimed 12(7):705–716

    Google Scholar 

  257. Zamir O and Etzioni O, Web document clustering: a feasibility demonstration. In 21st annual international acm sigir conference on research and development in information retrieval (SIGIR), 1998. pp. 46–54.

  258. Zamir O and Etzioni O, Grouper: A Dynamic Clustering Interface to Web Search Results. In: Proc. of the Inter. World Wide Web Conf 1999, pp. 1361–1374.

  259. Zeigler CN, McNee SM, Konstan JA and Lausen G Improving Recommentation Lists Through Topic Diversification. In: Proceedings of the 14th International Conference on the World Wide Web, 2005. pp. 22–32.

  260. Zeng HJ et al. Learning to Cluster Web Search Results. In: Annual international ACM SIGIR conference on research and development in information retrieval (SIGIR), 2004. pp. 210–217.

  261. Zhang B, Li H, Liu Y, Ji L, Xi W, Fan W, Chen Z and Ma WY, Improving Web Search Results using Affinity Graph. In: Proceedings of the 28th international ACM SIGIR conference on research and development in information retrieval, 2005. pp. 504–511, NY.

  262. Zhang J, Marszalek M, Lazebnik S, Schmid C (2007) Local features and kernels for classification of texture and object categories: a comprehensive study. Int J Comput Vision 73(2):213–238

    Google Scholar 

  263. Zhang L, et al. 2004 InfoAnalyzer: a Computer-aided Tool for Building Enterprise Taxonomies. In: International Conference on Information and Knowledge Management (CIKM), pp. 477–483.

  264. Zhang T, Ramakrishnan R, Linvy M (1996) BIRCH: an efficient data clustering method for very large databases. Proc ACM SIGMOD Conf Manag Data 25(2):103–114

    Google Scholar 

  265. Zhao G et al (2016) Entity disambiguation to wikipedia using collective ranking. Inf Process Manage 52(6):1247–1257

    Google Scholar 

  266. Zhao K., et al., Clustering Image Search Results by Entity Disambiguation. In: European Conf. on Machine Learning (ECML'14), 2014. (3): 369–384.

  267. Zhong X, Xu X (2020) Clustering-based method for large group decision making with hesitant fuzzy linguistic information: integrating correlation and consensus. Appl Soft Comput 87:105973

    Google Scholar 

  268. Zhuang Y., et al., Personalized clustering for social image search results based on integration of multiple features. In: International conference on advanced data mining and applications (ADMA), 2012. pp. 78–90.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe Tekli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekli, J. An overview of cluster-based image search result organization: background, techniques, and ongoing challenges. Knowl Inf Syst 64, 589–642 (2022). https://doi.org/10.1007/s10115-021-01650-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-021-01650-9

Keywords

Navigation