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Abstract A fuzzy extractor is a powerful but theoretical
tool that can be used to extract uniform strings from (dis-
crete) noisy sources. However, when using a fuzzy extractor
in practice, extra features are needed, such as the renewabil-
ity of the extracted strings and the ability to use the fuzzy
extractor directly on continuous input data instead of dis-
crete data. Our contribution is threefold. Firstly, we propose
a fuzzy embedder as a generalization of the fuzzy extractor.
A fuzzy embedder naturally supports renewability, as it
allows a string to be embedded instead of extracted. It also
supports direct analysis of quantization effects, as it makes
no limiting assumptions about the nature of the input source.
Secondly, we give a general construction for fuzzy embed-
ders based on the technique of quantization index modulation
(QIM). We show that the performance measures of a QIM, as
proposed by the watermarking community, translate directly
to the security properties of the corresponding fuzzy embed-
der. Finally, we show that from the perspective of the length
of the embedded string, quantization in two dimensions is

I. Buhan (B)
Information and System Security, Philips Research Laboratories,
High Tech Campus 34, Room 6.33, Eindhoven, The Netherlands
e-mail: ileana.buhan@philips.com

J. Doumen
Irdeto Research, Flight Forum 89, 5657 DC,
Eindhoven, The Netherlands

P. Hartel · Q. Tang
Distributed and Embedded Security, Faculty of EEMCS,
University of Twente, P.O. Box 217, 7500 AE,
Enschede, The Netherlands

R. Veldhuis
Signals and Systems Group, Electrical Engineering,
University of Twente, P.O. Box 217, 7500 AE,
Enschede, The Netherlands

optimal. We present two practical constructions for a fuzzy
embedder in two-dimensional space. The first construction
is optimal from reliability perspective, and the second con-
struction is optimal in the length of the embedded string.

Keywords Biometrics · Cryptographic keys ·
Sphere packing

1 Introduction

Cryptographic protocols rely on exactly reproducible key
material. In fact, these protocols are designed to have a wildly
different output if the key is only perturbed slightly. Unfortu-
nately, exactly reproducible keys are hard to come by, espe-
cially when they also need to have sufficient entropy. For
example, one can hardly expect an average user to remem-
ber a password that consists of a string of 128 random bits.
Luckily, it is relatively easy to find “fuzzy” sources, such as
physically uncloneable functions (PUFs) [23] and biometrics
[12]. However, such sources are inherently noisy and rarely
uniformly distributed. The first, main difficulty in using the
output of a fuzzy source as key material is the noise, which
has to be corrected to produce the same key every time.
To solve this problem, the notion of a secure sketch [18] has
been proposed. The second difficulty lies in the fact that this
output may have a non-uniform distribution, while it should
be as close to uniform as possible to serve as a cryptographic
key. A strong randomness extractor could be used to turn the
reproducible output into a nearly uniform string. This natu-
rally leads to the notion of a fuzzy extractor [12], which gives
a reproducible, nearly uniform string as output. A common
way of constructing fuzzy extractors is to combine a secure
sketch with a strong randomness extractor.
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194 I. Buhan et al.

However, when deploying a fuzzy extractor in practice,
more difficulties arise. Firstly, even with the same input, it
should be possible to generate many different keys. This is
paramount when considering biometrics, where the number
of possible inputs is limited (two eyes, 10 fingers etc.). To
achieve renewability of the cryptographic key, the (fixed) out-
put of the fuzzy extractor must be randomized, for instance
by using a common reference string. Unfortunately, this falls
outside the scope of the fuzzy extractor, even though it is
recognized as an important and sensitive issue [3].

Secondly, the definition of a fuzzy extractor only accepts
discrete sources as input. Existing performance measures for
secure sketches, such as entropy loss or min-entropy, lose
their relevance when applied to continuous sources [18].
This limitation can be overcome by quantizing the continuous
input. Li et al. [18] propose to define relevant performance
measures with respect to the chosen quantization method.
We argue that, instead of defining performance only after
quantization, it is better to integrate the quantization into the
definition, so that the intricacies of a continuous input can be
studied.

CONTRIBUTIONS Our contribution is threefold. Firstly,
we propose a new primitive called a fuzzy embedder, which
is a natural extension of a fuzzy extractor. A fuzzy embed-
der provides a randomized output and handles arbitrary input
sources.

The survey of template protection schemes presented by
Uludag et al. [29] divides known template protection schemes
into two categories. The first category consists of construc-
tions that extract a cryptographic key from a noisy input.
Such constructions are elegantly formalized by the notion
of a fuzzy extractor. The second category consists of con-
structions that “bind” a cryptographic key to a noisy input.
For this category, only practical constructions are known,
whereas formal models do not exist. The notion of a fuzzy
embedder fills this important gap. A fuzzy embedder can be
regarded as an extension of a fuzzy extractor, since it can
embed a fixed string (for instance one obtained by applying
a strong extractor to the input source) into a discrete source
and thus achieve the same functionality, namely a random-
ized cryptographic key.

Interestingly, the fuzzy commitment [16] has a direct rela-
tion to a fuzzy embedder as well: removing the binding
property from a fuzzy commitment scheme yields a fuzzy
embedder, which suggests that a fuzzy commitment is more
general than a fuzzy embedder.

Secondly, we propose a general construction for a fuzzy
embedder, using data hiding techniques from the watermark-
ing community. Our construction is based on quantization
index modulation (QIM), which is a watermarking method
that can achieve efficient trade-offs between the information
embedding rate, the sensitivity to noise, and the distortion

[10]. The construction of a fuzzy embedder is intuitive as
most of the properties of a fuzzy embedder can be reduced
directly to the properties of the underlying QIM. The trade-
offs of the used QIM give rise to similar trade-offs in fuzzy
embedder performance measures. In this setting, shielding
functions [19] can be regarded as a particular construction
of a fuzzy embedder, as they focus on one particular type
of quantizer. However, they only consider one-dimensional
inputs.

Thirdly, we investigate different quantization strategies
for high dimensional data, and we show that quantization
in two dimensions gives an optimal length of the embedded
uniform string. Finally, we focus on the two-dimensional case
and give two practical constructions, one being optimal from
the perspective of sensitivity to noise and the other being
optimal from the key length perspective.

2 Related work

Reproducible randomness is the main ingredient of a good
cryptographic system. Good-quality uniform random sources
are rare compared to the more common non-uniform sources.
For example, biometric data is easily obtainable, high entropy
data. However, biometric data is not uniformly distributed,
and its randomness cannot be exactly reproduced. Depending
on the source properties, several constructions have been pro-
posed for obtaining cryptographic keys from noisy sources.

Dodis et al. [12] consider discrete distributed noise and
propose fuzzy extractors and secure sketches for different
error models. These models are not directly applicable to
continuously distributed sources. Linnartz et al. [19] con-
struct shielding functions for continuously distributed data
and propose a practical construction which can be consid-
ered a one-dimensional QIM scheme. The same approach is
taken by Li et al. [18] who propose quantization functions
for extending the scope of secure sketches to continuously
distributed data. Buhan et al. [6] analyze the achievable per-
formance of such constructions given the quality of the source
in terms of the false acceptance rate and false rejection rate
of a biometric system.

The process of transforming a continuous distribution into
a discrete distribution influences the performance of the over-
all system, which uses fuzzy extractors and secure sketches.
Quantization is the process of replacing analog samples with
approximate values taken from a finite set of allowed values.
The basic theory of one-dimensional quantization is reviewed
by Gersho [14]. The same author investigates the influence of
high dimensional quantization on the performance of digital
coding for analog sources [15]. QIM constructions are used
by Chen and Wornell [10] in the context of watermarking.
The same authors introduce dithered quantizers [9]. Moulin
and Koetter [22] give an excellent overview of QIM in the
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Embedding renewable cryptographic keys into noisy data 195

general context of data hiding. Barron et al. [2] develop a
geometric interpretation of conflicting requirements between
information embedding and source coding with side infor-
mation.

The concept of a fuzzy embedder might seem related to
concepts developed in the context of information theoretic
key agreement [20] more precisely to secure message trans-
mission schemes based on correlated randomness [21]. How-
ever, the settings of the problem are different compared to
ours. While in secure message transmission based on corre-
lated randomness, the adversary and the legitimate partici-
pants have a noisy share of the same source data, in the fuzzy
embedder setting the adversary does not have access to the
data source.

ROADMAP The rest of this paper is organized as follows.
In Sect. 4, we present the definition of a fuzzy embedder
and highlight the differences with fuzzy extractors and fuzzy
commitment. In Sect. 5, we propose a general construction
of a fuzzy embedder from any QIM and express the perfor-
mance in terms of the geometric properties of the underlying
quantizers. In Sect. 6, we present two practical constructions
for the quantization of two-dimensional space and compare
the properties of these constructions with the existing square
lattice packing. The last section concludes this paper.

3 Preliminaries

Before we delve into the differences between discrete and
continuous source noisy data, we need to establish some
background. We start by giving our notation, as well as some
basic definitions. Second, we summarize the fuzzy extractor
for a discrete source as given by Dodis et al. [12] and Boyen
et al. [3]. Third, we briefly discuss the chosen model of the
continuous source and its implications. Finally, we remind
the reader of the definitions of error rates commonly used in
the literature.

NOTATION Let M be an n-dimensional discrete, finite set,
which together with a distance function dM : M×M → R

+
is a metric space. Similarly, let U be an n-dimensional con-
tinuous domain, which together with the distance dU : U ×
U → R

+ forms a metric space. When the domain is clear
from the context, we use d and drop the subscript.

By capital letters we denote random variables, while small
letters are used to denote observations of a random variable.
Continuous random variables are defined over the metric
space U , while a discrete random variable is defined over
the metric space M . A random variable A is endowed with a
probability density function f A(a).

We use the random variable P when referring to public
sketch data and R for random binary strings, which can be
used as cryptographic keys.

ENTROPY When referring to cryptographic keys, the
strength of the key is measured as the min-entropy, i.e., the
probability that an adversary predicts the value of the secret
key from one attempt. The adversary’s best strategy is to
guess the most likely value. The min-entropy or the predict-
ability of a random variable A denoted by H∞(A) is defined
as:

H∞(A) = − log2

(
max
a←A

Pr(A = a)

)
.

Min-entropy can be viewed as the “worst-case” entropy [12].
For two (possibly correlated) random variables A and B, the
average min-entropy is defined as

H̃∞(A|B) = − log

(
Eb←B

[
max
a←A

Pr(A = a|B = b)

])

= − log
(
Eb←B

(
2−H∞(A|B=b)

))
,

which represents the remaining uncertainty about A given
B or the amount of uncertainty left about variable A when
variable B is made public [12] (both A and B are discrete
random variables).

MUTUAL INFORMATION By I (A; B), we note the
Shannon mutual information between the two random vari-
ables A and B, which is a measure of the mutual depen-
dence between two random variable, in the following sense:
I (A; B) = 0 if and only if A and B are independent random
distributed variables.

STATISTICAL DISTANCE The Kolmogorov distance or
statistical distance between two probability distributions A
and B with the same domain is defined as:

SD(A, B) = sup
v
|Pr(A = v)− Pr(B = v)|.

Informally, this is the largest possible difference between the
probabilities that the two probability distributions can assign
to the same event.

FUZZY EXTRACTORS For modeling the process of ran-
domness extraction from noisy data Dodis et al. [12] define
the notion of a fuzzy extractor, see Fig. 1. A fuzzy extrac-
tor extracts a uniformly random string r from a value x of
random variable X in a noise tolerant way with the help of
some public sketch p.

The Generate procedure takes a non-uniformly random,
noisy input x and produces two outputs: a public string p and
a key r . The key r is uniformly random given p, and accord-
ing to the definition of p, reveals no information about the
input x . However, one can reproduce r exactly when both
p and x ′ (close to x) are presented to the Reproduce
procedure.

For a discrete metric space M with a distance measure d,
the formal definition of a fuzzy extractor [3,12] is:
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Fig. 1 A fuzzy extractor is a pair of two procedures Generate and
Reproduce. The Generate procedure, which takes as input a noisy
input x , is executed first. The result is a random sequence r and a pub-
lic sketch p, which is made public. The Reproduce procedure, which
takes as input x ′ that is corrupted by noise and the public sketch p, will
output r if x and x ′ are close

Definition 1 (Fuzzy extractor) An (M, m, l, t, ε) fuzzy
extractor is a pair of randomized procedures, Generate and
Reproduce, with the following properties:

1. The generation procedure on input of x ∈M outputs an
extracted string r ∈ R = {0, 1}l and a public helper
string p ∈ P = {0, 1}∗.

2. The reproduction procedure takes an element x ′ ∈
M and the public string p ∈ {0, 1}∗ as inputs. The
reliability property of the fuzzy extractor guarantees that
if d(x, x ′)≤ t and r, p were generated by (r, p) ←
Generate(x), then Reproduce(x ′, p) = r . If d(x, x ′)
> t, then no guarantee is provided about the output of
the reproduction procedure.

3. The security property guarantees that for any random
variable X with distribution fX (x) of min-entropy m, the
string r is nearly uniform even for those who observe p: if
(r, p)← Generate(X), then SD((R, P), (N , P)) ≤ ε

where N is a random variable with uniform probability.

A fuzzy extractor is efficient if Generate and Reproduce
run in polynomial time.

In other words, a fuzzy extractor allows to generate the
random string r from a value x . The reproduction procedure
that uses the public string p produced by the generation pro-
cedure will output the string r as long as the measurement x ′
is close enough. The security property guarantees that r looks
uniformly random to an adversary, and her chance to guess
its value from the first trial is approximately 2−m . Security
encompasses both min-entropy and uniformity of the random
string r when p are known to an adversary. There are two
shortcomings related to the above definition. Firstly, in the
above definition R = {0, 1}l thus a random binary string of
length l. The public string P = {0, 1}∗ which can be for
example the syndrome of an error correcting code. However,
there are template protection schemes that fit the model of
the fuzzy extractors for which P is drawn from R [19] or
Z [26]. Secondly, one can say that X has min-entropy only

if it is a discrete probability density function otherwise its
min-entropy depends on the precision or quantization used
to represent the variable [18].

FUZZY COMMITMENT The definition of a fuzzy com-
mitment scheme as by introduced Juels et al. [16] is:

Definition 2 (Fuzzy commitment) A fuzzy commitment
scheme consists of a pair of two procedures Commit and
Decommit defined as follows:

1. Commit : S× X → Y (run by the committer). The com-
mitter takes s ∈ S and x ∈ X as input and generates a
committed string y ∈ Y .

2. Decommit : Y × X → S (run by the verifier). The veri-
fier takes y ∈ Y and x ∈ X as input, and outputs a string
s ∈ S or an error ⊥.

3. t-fuzziness: Suppose c = Commit(s, x) then s =
Decommit(c, x ′) given d(x, x ′) ≤ t .

In a commitment scheme, there are two parties: the com-
mitter and the verifier. The committer commits to a string s
by sending some data c to the verifier. The committer can
enable the verifier to check the committed value by sending
(s, c) and other helper data. A commitment scheme is said
to be hiding if it is infeasible for the verifier to obtain c with-
out the help of the committer. A commitment scheme is said
to be binding if it is infeasible for the committer to change
the committed value. Note that, besides the t-fuzziness prop-
erty, the verifier does not need s to run Decommit in a fuzzy
commitment scheme.

QUANTIZATION A continuous random variable A can
be transformed into a discrete random variable by means of
quantization, which we write Q(A). Formally, a quantizer
is a function Q : U → M that maps each a ∈ U into the
closest reconstruction point in the set M = {c1, c2, . . .} by

Q(a) = arg min
ci∈M

d(a, ci ).

where d is the distance measure defined on U .
The Voronoi region or the decision region of a reconstruc-

tion point ci is the subset of all points in U , which are closer,
with respect to a specific distance measure, to that particular
reconstruction point than to any other reconstruction point.
We denote with Vci the Voronoi region of reconstruction point
ci . When A is one dimensional, Q is called a scalar quan-
tizer. If all Voronoi regions of a quantizer are equal in both
size and shape, the quantizer is uniform. In the scalar case,
the length of the Voronoi region is then called the step size. If
the reconstruction points form a lattice, the Voronoi regions
of all reconstruction points are congruent.

By quantization, the probability density function of the
continuous random variable A, f A(a), which is continuous,
is transformed into the probability density function fQ(A)(a),
which is discrete (see Fig. 2).
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Embedding renewable cryptographic keys into noisy data 197

Fig. 2 By quantization, f A(a) (continuous line) is transformed into
fQ(A)(a) (dotted line). We can write Q( f A(a)) = fQ(A)(a).

Fig. 3 Quantization of X with two scalar quantizers Q0 and Q1 both
with step size q

QUANTIZATION-BASED DATA HIDING CODES Quan-
tization-based data hiding codes as introduced by Chen et al.
[10] (also known as quantization index modulation) can
embed secret information into a real-valued quantity. We start
with an example of the simplest case.

Example 1 We want to embed one bit of information, thus
r ∈ {0, 1} into a real value x . For this purpose, we use a
scalar uniform quantizer with step size q, given by rounding
x
q :

Q(x) = q

[
x

q

]
.

The quantizer Q is used to generate a set of two new quan-
tizers {Q0, Q1} defined as:

Q0(x) = Q(x + v0)− v0 and Q1(x) = Q(x + v1)− v1

where

v0 = q

4
and v1 = −q

4
.

In Fig. 3, the reconstruction points for the quantizer Q1

are shown as circles, and the reconstruction points for the
quantizer Q0 are shown as crosses. The embedding is done
by mapping the point x to one of the elements of these two
quantizers.

For example, if r = 1, x is mapped to the closest ◦ point.
The result of the embedding is the distance vector to the

nearest × or ◦ as chosen by r . When during reproduction
procedure x is perturbed by noise, the quantizer will assign
the received data to the closest × or ◦ point, and output 0
or 1 respectively. The set of the two quantizers {Q0, Q1} is
called a QIM.

The amount of tolerated noise or the reliability is deter-
mined by the minimum distance between two neighboring
reconstruction points. The size and shape (for high dimen-
sional quantization) of the Voronoi region determines the
tolerance for error. The number of quantizers in the QIM set
determines the amount of information that can be embed-
ded. By setting the number of quantizers and by choosing
the shape and size of the decision region, the performance
properties can be finely tuned.

Formally, a Quantization Index Modulation data hiding
scheme can be seen as QIM : U × R→ M a set of individual
quantizers {Q1, Q2, . . . Q2l }, where l = |R| and each quan-
tizer maps x ∈ U into a reconstruction point. The quantizer
is chosen by the input value r ∈ R such that QIM(x, r) =
Qr (x). The set of all reconstruction points is M =⋃

r∈R Mr

where Mr ⊂M is the set of reconstruction points of the quan-
tizer Qr .

We define the minimum distance σmin of aQIM, as the min-
imum distance between reconstructions points of all quan-
tizers in the QIM:

σmin = min
r1,r2∈R

min
ci

r1
∈Mr1 ,c j

r2∈Mr2

d(ci
r1

, c j
r2)

where Mr1 = {c1
r1

, c2
r1

, . . .} and Mr2 = {c1
r2

, c2
r2

, . . .}. Hence,
balls with radius σmin

2 and centers in M are disjoint.
Let ζr be the smallest radius ball such that balls centered

in the reconstruction point of quantizer Qr with radius ζr

cover the universe U . We define the covering distance λmax

as:

λmax = max
r∈R

ζr .

Any ball B(c, ζr ) contains at least one ball B(cr , σmin/2) for
cr ∈ Mr ,∀r ∈ R. Hence, balls with radius λmax and centers
in Mr cover the universe U .

A dithered QIM [9] is a special type of QIM for which
all Voronoi regions of all individual quantizers are congru-
ent polytopes (generalization of a polygon to higher dimen-
sions). Each quantizer in the ensemble {Q1, Q2, . . . Q2l } can
be obtained by shifting the reconstruction points of any other
quantizer in the ensemble. The shifts correspond to dither
vectors {v1, v2, . . . v2l }. The number of dither vectors is equal
to the number of quantizers in the ensemble.

Now that we have presented the necessary preliminaries,
we are ready to present the notion of a fuzzy embedder in the
next section.
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4 Fuzzy embedder

In this section, we propose a general approach to embed cryp-
tographic keys into noisy, continuous data. In addition, we
show the relation between our new fuzzy embedder primitive
and two related concepts, the fuzzy extractor and fuzzy com-
mitment. It is worth stressing that the random key r is not
extracted from the random x but is generated independently,
see Fig. 4.

Definition 3 (Fuzzy embedder) A (U, �, ρ, ε, δ)-fuzzy
embedder scheme consists of two polynomial-time algo-
rithms 〈Embed, Reproduce〉, which are defined as follows:

– Embed: U×R→ P , where R = {0, 1}l . This algorithm
takes x ∈ U and r ∈ R as input and returns a public string
p ∈ P .

– Reproduce: U × P → R. This algorithm takes x ′ ∈ U
and p ∈ P as input, and returns a string from R or an
error ⊥.

Given any random variable X over U and a random vari-
able R of size �, the parameters ρ, ε, δ are defined as follows:

– The parameter ρ represents the probability that the fuzzy
embedder can successfully reproduce the embedded key,
and it is defined as

ρ = min
r∈R

max
x∈U

Pr(Reproduce(x ′, Embed(x, r))

r |x ′ ∈ X).

In the above definition, the maximum over x ∈ U ensures
that we choose the best possible representative x for the
random variable X . In most cases, this will be the mean
of X .

– The security parameter ε is equal to the mutual informa-
tion between the embedded key, and the public sketch P ,
and it is defined as ε = I (R;Embed(X, R)).

Fig. 4 A fuzzy embedder is a pair of two procedures Embed and
Reproduce. The Embed procedure, which takes as input a noisy input
x and a binary sequence r generated independently, is executed first. The
resulting sketch p is made public. The Reproduce procedure, which
takes as input x ′ which is (possibly) corrupted by noise and the public
sketch p, will output r if x and x ′ are close

– The security parameter δ is equal to the mutual informa-
tion of the noisy data and the public sketch and is defined
as δ = I (X;Embed(X, R)).

A few notes are needed to motivate our choice of the secu-
rity measures of a fuzzy embedder construction. Since the
public sketch is computed both on X and R, ε measures the
amount of information revealed about X (biometric or PUF),
and δ measures the amount of information P reveals about
the cryptographic key R.

When evaluating security of algorithms, which derive
secret information from noisy data, entropy measures like
min-entropy and average min-entropy or entropy loss are
appealing since these measures have clear security applica-
bility. However, these measures can only be applied to a var-
iable that has a discrete probability density function. In the
case of a continuous random variable, these entropy mea-
sures depend on the precision used to represent the values
of a random variable, as shown in the next example for min-
entropy.

Example Assume that all points X are real numbers between
[0, 1] and are uniformly distributed. Assume further that
points in X are represented with 2-digit precision, which
leads to a min-entropy H∞(X) = log2 100. If we choose
to represent points with 4-digit precision, the min-entropy
of X becomes H∞(X) = log210000, which is higher than
H∞(X) = log2 100, although in both cases X is uniformly
distributed on the interval [0, 1].

More examples related to average min-entropy and
entropy loss can be found in Li et al. [18]. We chose mutual
information measure, i.e I (X; P) and I (R; P) because it
captures the measure of dependence between two random
variables regardless of their type of distribution discrete or
continuous. A similar measure for the dependence of two
variables is the statistical distance between their distribution.
In this case, our choice is motivated by the generality given
by the information theoretical measures.

FUZZY EXTRACTOR AND FUZZY EMBEDDER From
Definitions 1 and 3, we argue that a fuzzy embedder is more
general than a fuzzy extractor, due to the following reasons:

1. The fuzzy embedder scheme accepts continuous data as
input and can embed different keys, while in a practical
deployment, a fuzzy extractor scheme must be combined
with quantization and re-randomization to achieve the
same goals as a fuzzy embedder.

2. Given a (U, �, ρ, ε, δ)-fuzzy embedder, we can construct
a fuzzy extractor as follows:

– Generate′: U → P × R. This algorithm takes
x ∈ U as input, chooses r ∈ R, and returns p =
Embed(x, r) and r .

123



Embedding renewable cryptographic keys into noisy data 199

– Reproduce′: U × P → R. This algorithm takes
x ′ ∈ U and p ∈ P as input and returns the value
Reproduce(x ′, p).

FUZZY COMMITMENT AND FUZZY EMBEDDER A
fuzzy embedder construction leads to a fuzzy commitment
[16] construction, since a fuzzy commitment scheme can be
constructed from a fuzzy embedder by adding a checksum
to the output of the embed procedure. Specifically, given a
(U, �, ρ, ε, δ)-fuzzy embedder scheme, we can construct a
fuzzy commitment scheme as follows:

– Commit′: U × R → P . This algorithm takes x ∈ U
and r ∈ R as input and returns p = Embed(x, r) and
c = h(r) where h is an appropriate hash function.

– Decommit′: U × P → R. This algorithm takes
x ′ ∈ U, p ∈ P , and c as input, and computes r ′ =
Reproduce(x ′, p). If r ′ =⊥ or h(r ′) �= c, output ⊥;
otherwise output r ′.

Given a random variable X over U , an honest committer
can successfully convince the verifier with probability ρ, to
accept the committed string. The parameter ε is an indicator
of the hiding property, and the binding property is achieved
if h(·) is collision resistant.

In the next section, we take a closer look at the necessary
building blocks when realizing a practical fuzzy embedder
and explain the intricacies of a realizing a practical fuzzy
embedder.

4.1 Fuzzy embedder building blocks

A fuzzy extractor can transform a noisy, non-uniform dis-
crete source of data, which is easily accessible into a repro-
ducible, uniformly random string, which is suitable to be
used as a cryptographic key. Basically, the fuzzy extractor
performs two functions: the first is error correction, which
compensates for the noise in the source data, and the second
is smoothing the non-uniform distribution of the source into
a uniformly random distribution of the output.

When considering a fuzzy extractor construction in a prac-
tical scenario, the two functions provided are not enough.
Firstly, a fuzzy extractor is too limited because it accepts
only discrete input data. Thus, a procedure that transforms
continuous data into discrete data is necessary. The cs-fuzzy
extractor, proposed by Buhan et al. [6], is an extension of the
fuzzy extractor construction in this sense. Secondly, a fuzzy
extractor as pointed out by Boyen [3] needs to re-randomize
its output such that one noisy source can be used in more
than one application.

A typical fuzzy extractor implementation can be modeled
as in Fig. 5. In our view, there are four main building blocks:
quantization, error correction, randomness extraction, and

Fig. 5 Typical implementation of a fuzzy extractor. The shape of a
block is a code for its purpose. Square blocks perform error correction,
pentagonal blocks shape the distribution of the data, while the circle
blocks are used to randomize the data. A fuzzy extractor can be con-
structed from an error correcting block and a randomness extractor. On
the left-hand side of the figure the input variable (with capital letters,
above the arrow). On the right-hand side of each block, the security
measure used to evaluate the performance of the block is presented

randomization, which can be used in a typical fuzzy extrac-
tor implementation.

Each block in Fig. 5 solves a specific problem, and in the
following we take a closer look at the purpose and require-
ments for each of the four blocks.

QUANTIZATION The quantization block is used to trans-
form continuously distributed data X with probability den-
sity function fX (x) into discretely distributed data Y with
discrete probability density fY (y). This block can shape the
probability density function distribution fX (x) into fY (Y )

and changes the continually distributed data into discretely
distributed data. Examples of quantization schemes can be
found in Chen et al. [11] and Zhang et al. [31] and in Fig. 2.
During quantization, the public sketch denoted with P1 in
Fig. 5 is computed and made public. The information leaked
by the public sketch about the noisy source data is measured
in terms of mutual information I (X; P1) between the source
data X and the public sketch P1.

ERROR CORRECTION The error correction block adds
redundant information to the input variable Y to increase
the probability that its values are correctly reproduced. The
input variable Y = (Y1, Y2, . . . Yn) is represented as a
n-dimensional vector, and its elements Yi are called feature
vectors.

There are two types of noise that can occur in Y . The first
is additive noise where elements of Yi are perturbed by noise,
and the second is replacement noise where some features of Y
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can disappear, and new features can appear between two con-
secutive measurements. Error correction schemes that correct
additive noise were proposed by several authors [11,19,31]
while error correction schemes for replacement noise can be
found in [7,28].

To perform error correction, a public sketch (also called
helper data) is computed for Y . If the helper data is made
public, which is the case in most scenarios, it reveals infor-
mation about the variable Y .

The performance of an error correction scheme is mea-
sured in terms of how many errors it can correct and the
amount of leaked information.

When the source data is continuous, the leakage is mea-
sured in terms of mutual information, in Fig. 5 I (X; P),
where P can be either P1 or P2. When the source data is
discrete as in the error correction block in Fig. 5, the amount
of leaked information is measured in terms of min-average
entropy H∞(Y ; P2) and min-entropy H∞(Y ). The difference
between the two is called the entropy loss.

RANDOMNESS EXTRACTOR This block is used to trans-
form any probability density function fY (y) into a uni-
form probability function fZ (z), which is desirable for a
cryptographic algorithm. A randomness extractor is used to
“purify” the randomness coming from an imperfect source of
randomness, it can efficiently convert a distribution that con-
tains some entropy (but is also biased and far from uniform)
Y into an almost uniform random variable Z .

The performance of a randomness extractor is measured
in terms of the statistical distance between the distribution
of the output variable Z and the distribution of a uniform
random variable N , denoted in Fig. 5 by SD(Z , N ).

In the process of randomness extraction, an external
source of randomness must be present. Reducing the amount
of required randomness in the external source and producing
outputs, which are as close as possible to a uniform distribu-
tion is the main research topic in this area [1,24,25].

There are constructions known as strong randomness
extractors [12] for which the output of the randomness
extractor looks uniform even when the external source of
randomness is made public, which are more convenient for
the purpose of the scenario depicted in Fig. 5.

RANDOMIZATION This block is used to randomize the
string which can be extracted from the noisy source. When
biometrics is used as a noisy source, the purpose of ran-
domization is protection of privacy for the biometric data.
For example, from one fingerprint only one reproducible,
uniform string can be extracted. The randomization ensures
that from one fingerprint multiple random sequences, which
can be used as cryptographic keys for more applications, can
be produced.

We argue that the model described in Fig. 5 covers most
of the work done in the area of construction of cryptographic

keys from noisy data. Theoretical work in the area usually
covers the error correction block and randomness extraction
[12,13], whereas others look at more practical aspects like
quantization [6,8,11,18,31] or randomization [3,4,7].

The fuzzy embedder construction is intended as an all-
encompassing theoretical model given the functionality of a
fuzzy extractor. Thus, a fuzzy embedder is able to hide a key
in any type of source data. Most of the work in the area of
cryptographic use of noisy data focuses on optimizing one
aspect, e.g quantization and randomness extraction. Security
measures used to quantify the performance in each block are
different as they are studied in different research areas. In
a practical scenario, when all these blocks are needed it is
important to have an overall view of all the information that
is leaked or the amount of errors that are corrected. The main
purpose of the fuzzy embedder is to put things in perspective
and define the overall security measures.

When realizing a fuzzy embedder in a practical scenario,
the chosen building blocks depend mostly on the input data
and the desired properties of the output data. However, using
any given block adds a penalty, expressed in terms of secu-
rity performance thus adding a minimal number of building
blocks is desirable. In the next section, we will present a
general construction for a fuzzy embedder that does not rely
directly on a fuzzy extractor and uses only a quantizer and a
randomizer.

5 Practical construction of a fuzzy embedder

In this section, the following three practical issues are pre-
sented. Firstly, we construct a fuzzy embedder using a QIM.
Secondly, we analyze the performance of this construction
in terms of reliability and security. Thirdly, we investigate
optimization issues when U is n-dimensional.
QIM-FUZZY EMBEDDER A fuzzy embedder can be con-

structed from any QIM by defining the embed procedure as:

Embed(x, r) = QIM(x, r)− x,

and the reproduction procedure as the minimum distance
Euclidean decoder:

Reproduce(x ′, p) = Q̃(x ′ + p),

where Q̃ : U → R is defined as

Q̃(y) = argminr∈Rd(y, Mr ).

Example Our construction is a generalization of the scheme
of Linnartz et al. [19]. Figures 6 and 7 illustrate the Embed,
respectively the Reproduce procedures for a QIM ensemble
of three quantizers {Qo, Q+, Q
}. During embedding, the
secret r ∈ {o, 
,+} selects a quantizer, say Qo. The selected
quantizer finds the reconstruction point Qo(x) closest to x ,
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Fig. 6 Embed procedure of QIM fuzzy embedder

Fig. 7 Reproduce procedure of a QIM fuzzy embedder

and the embedder returns the difference between the two as
p, with p ≤ λmax. Reproduction of p and x ′ should return
o if x ′ is close to x ; however, this happens only if x ′ + p is
close to Qo(x) or in other words, if x ′ + p is in one of the
Voronoi regions of Qo (hatched area in Fig. 7). Errors occur
if (x ′ + p) is not in any of the Voronoi regions of Qo, thus
the size and shape (for n ≥ 2) of the Voronoi region parame-
terized by the radius of the inscribed ball σmin/2 determines
the probability of errors.

5.1 Reliability

In the following lemma, we link the reliability of a QIM-
fuzzy embedder to the size and shape of the Voronoi regions
of the employed QIM.

Lemma 1 (Reliability) Let 〈Embed, Reproduce〉 be a
(U, �, ρ, ε, δ) QIM-fuzzy embedder, and let X be a random
variable over U with joint density function fX (x). For any
r ∈ R, we define

ρ(r) =
∫
Vr

fX (y − Embed(X, r))dy,

where Vr =⋃
c∈Mr

Vc is the union of the Voronoi regions of
all reconstruction points in Mr . Then the reliability is equal
to

ρ = min
r∈R

ρ(r).

Proof Since ρ(r) is exactly the probability that an embedded
key r will be reconstructed correctly, the statement follows
from the definition. ��

In most practical applications, noise has two main prop-
erties: larger distances between x and the measurement x ′

are increasingly unlikely, and the noise is not directional.
Thus, the primary consideration for reliability is the size of
the inscribed ball of the Voronoi regions, which has radius
σmin/2.

Corollary 1 (Bounding ρ) In the settings of Lemma 1, the
reliability ρ can be bounded by

min
r∈R

∑
c∈Mr

∫

B(c,
σmin

2 )

fX (y)dy ≤ ρ

where B(c, r) is the ball centered in c with radius r .

Proof The above relation follows from the definition of reli-
ability, since B(c, σ

2 ) ⊂ Vc and y = x + Embed(X, r) is
always a reconstruction point. ��

Corollary 1 shows that reliability is at least the sum of
all probabilities computed over balls of radius σmin

2 inscribed
in the Voronoi regions. Thus the size of the inscribed ball is
an important parameter, which determines the reliability to
noise.

Example In two-dimensional space there are three regular
polytopes, which tile the space: triangle, square and hexa-
gon. If the size of the inscribed circle is equal for all three,
in case of a spherically symmetric distribution like the nor-
mal distribution, the hexagon has superior reliability perfor-
mance compared to the other two polytopes because its shape
is more close to a ball. The shape of the decision region that
inscribes the ball is important as well as we show in Sect. 6.

5.2 Security

In this section, we link the security of a fuzzy embedder to
the covering radius, λmax of the employed QIM.

We start this paragraph with one observation. If an adver-
sary learns the value x , she can reproduce the value r with the
help of the public value p. However, if an adversary learns
the secret key r , she could potentially circumvent the security
altogether but cannot reproduce x . We illustrate this obser-
vation in the next example.

Example In the fuzzy embedder example given in Fig. 7,
the adversary can choose between three different key val-
ues{◦,+, 
}. Assume she learns the correct key, in our exam-
ple ◦. To find the correct value for x , she still has to decide
which of the reconstruction points of the quantizer Q◦ is
closest to x . Without any other information, this is an impos-
sible task since the quantizer Q◦ has an infinite number of
reconstruction points.

The public sketch p leaks information about both the ran-
dom string r (the amount of information revealed is δ) and
the value x (the amount of information revealed is denoted
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with ε). We note that full disclosure of the string r is not
enough to recover x .

We now consider how large δ, the leakage on the key can
be in terms of P , which due to our construction is a con-
tinuous variable. We know that any p ∈ P has the property
that p ≤ λmax. A technical difficulty in characterizing the
size of P arises as P is not necessarily discrete. Tuyls et al.
[27] show the following result, establishing a link between
the continuous and the quantized version of P denoted here
with Pd .

Lemma 2 (Tuyls et al. [27]) For continuous random vari-
ables X, Y , and ξ > 0, there exists a sequence of quantized
random variables Xd , Yd that converge pointwise to X, Y
(when d →∞) such that for sufficiently large d, I (X; Y ) ≥
I (Xd ; Yd) ≥ I (X; Y )− ξ.

From the lemma above we have:

I (R; Pd) ≤ H(Pd) ≤ |Pd |,
Pd is a quantized representation, of the public sketch P , using
a uniform scalar quantizer with step d. The reason for quan-
tizing P is to make it suitable for a digital representation.
|Pd | represents the size, in bits, of the sketch.

To limit the information loss of the construction, which
is the result of publishing the sketch Pd , it is best to have
|Pd | as small as possible. However, a small representation of
Pd implies that the cardinality of the set of values of Pd is
small as well. There are two ways in which we can achieve
a small representation for Pd . The first is to limit the support
on which P is defined, while the second is to choose a higher
value for the quantization step d. The second approach is not
convenient since the quantization that is used for P has to
be used for the noisy data X , thus we concentrate on the first
option: limit the support on which P is defined.

In our construction, we have |Pd | ≤ λmax. Thus by bound-
ing the size of p, we bound the value of δ. In the rest of this
paper, for simplicity reasons we use P when referring the
Pd .

5.3 Optimization

In this paragraph, we analyze the key length allowed by the
restrictions placed by our performance criteria on the embed
and reproduce procedures. Firstly, we take a look at the repro-
duce procedure which ties in directly with the reliability. The
minimum size of an error to produce a wrong decoding is
σmin/2. Thus, the collection of balls centered in the recon-
struction point of all quantizers with radius σmin/2 should be
disjoint.

Secondly, the result of the embed procedure for any arbi-
trary point x and any key r ∈ R has to be smaller than the
covering distance λmax. Hence, for each key r the collection

Fig. 8 Optimization of reliability versus security. Reliability is deter-
mined by the size of the ball with radius σmin/2. Each small ball has
associated with its center a different key r ∈ R. The number of small
balls inside the large ball with radius λmax is equal to l, the number of
elements in R. To have as many keys as possible, we want to increase
the number of small balls, thus we want dense (sphere) packing. The
size of the public sketch p ∈ P is at most λmax. Since for any x ∈ U , we
want to be within λmax distance to a specific r ∈ R, large balls should
cover optimally the space U . When the point x falls in a region, which
does not belong to any ball, the Reproduce procedure gives the closest
center of a small ball, thus we want polytopes which tile the space

of balls centered in the reconstruction points of Qk and with
radius λmax should cover the entire space U .

These two radii can be linked as follows:

Lemma 3 The covering distance of a QIM , λmax is bounded
from below by:

λmax ≥ n
√

N
σmin

2

where n represents the dimension of the universe U and N
is the number of different quantizers.

Proof As noted above, all balls with radius σmin/2 centered
in the centroids of the whole ensemble are disjoint. Each col-
lection of balls with radius λmax centered in the centroids of
an individual quantizer gives a covering of the space U , see
Fig. 8. ��

Therefore, a ball with radius λmax, regardless of its cen-
ter, contains at least the volume of N disjoint balls of radius
σmin/2, one for each quantizer in the ensemble. Comparing
the volumes, we have

snλ
n
max ≥ sn N

(σmin

2

)n

where sn is a constant only depending on the dimension.

The main conclusion of Lemma 3 is that for a QIM-fuzzy
embedder to produce a long random string r , thus the length
of r depends on the number of small balls which can be
placed into a large ball.

Consider the case when an adversary has partial knowl-
edge about the random variable X . For example, she could
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(a) (b)

Fig. 9 a Construction that yields equiprobable keys in case the back-
ground distribution is spherical symmetrical in the two-dimensional
space. b Optimal construction that results in minimal public sketch size
and has equiprobable keys in the two-dimensional space

know the average distribution of all (fingerprint) biometrics,
or the average distribution of the PUFs. This average distribu-
tion is known in the literature as the background distribution.
While any QIM-fuzzy embedder achieves equiprobable keys
if the background distribution on U is uniform, the equiprob-
ability can break down when this background distribution is
non-uniform and known to the adversary. A legitimate ques-
tion is: how can a QIM-fuzzy embedder achieve equiprobable
keys when the background distribution is not uniform?

In the literature [8,11,19], it is often assumed that the
background distribution is a multivariate Gaussian distri-
bution. We make a weaker assumption, namely that the
background distribution is not uniform but spherically sym-
metrical and decreasing. In other words, we assume that mea-
surement errors only depend on the distance, and not on the
direction, and that larger errors are less likely.

Thus, to achieve equiprobable keys given this background
distribution, the reconstruction points must be equidistant as
for example the construction in Fig. 9 a. Note that putting
more “small” balls inside the “large” ball is not possible since
they are not equiprobable. The problem with the construction
in Fig. 9a is the size of the sketch which becomes large.

The natural question, which arises is: what is the minimum
sketch size attainable such that all keys are equiprobable for
a given desired reliability?

This question leads us to consider the kissing number
τ(n), which is defined to be the maximum number of white
n-dimensional spheres touching a black sphere of equal
radius, see Fig. 9b. The radius of the “small” balls determines
reliability and the minimum λmax, such that a QIM-fuzzy
embedder can be built is equal to the radius of the circum-
scribed ball as shown in Fig. 9b.

The next question we ask is: for a minimum sketch size
and a given reliability, are there dimensions which are better
than others? For example, why not pack spheres in the three-
dimensional space where the kissing number is 12. For the
same reliability: is it possible to obtain more keys? For most
dimensions, only bounds on the kissing number are known

(a)

(c)

(b)

Fig. 10 Different choices for the number of quantizers in relation to
λmax in a QIM-fuzzy embedder construction. a There is only one quan-
tizer in the QIM set. This construction cannot be used for data hiding.
b Number of quantizers in the QIM set is equal to σn+1, when the mid-
dle ball has a different codeword then the neighboring balls (e.g., the
7-hexagonal construction) or precisely equal to the σn , when the middle
ball has no codeword associated (e.g., the 6-hexagonal construction).
c The QIM set has more quantizers then the kissing number

[17,30]. Assuming a spherically symmetrical and decreas-
ing background distribution, there are only so many different
equiprobable keys one can achieve:

Theorem 1 (Optimal high dimensional packing) Assume the
background distribution to be spherically symmetrical and
decreasing. For a (U, �, ρ, ε, δ) QIM-fuzzy embedder with
dim(U ) = n with equiprobable keys and minimal sketch
size, we have that � ≤ τ(n).

Proof The target reliability ρ will translate to a certain radius
σ . In other words, we need to stack balls of radius σ opti-
mally.

In Fig. 10, we have three possible constructions for the
QIM-fuzzy embedder, with different choices of number of
quantizers in the set versus the size of the public sketch.

The construction in Fig. 10a cannot be used for data hid-
ing since there is only one quantizer in the set. To achieve the
maximum number of equiprobable keys without the sketch
size getting too big, the best construction is to center the
background distribution in one such ball and to assign a dif-
ferent key to each touching ball as in Fig. 10b. Construction
in Fig. 10c yields a higher value for λmax and is not optimal
from the perspective of the size of the sketch.

The trade-off between the number of quantizers (and thus
the length of the output sequence) and the size of the sketch
can be seen by comparing constructions in Fig. 10b, c. As
the number of quantizers increases so does the size of the
sketch.
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Thus, the number of possible equiprobable keys, when
the background distribution is spherically symmetric and
decreasing, is upper bounded by the kissing number τ(n).

Combined with known bounds on the kissing number [17,
30], we arrive at the following, somewhat surprising conclu-
sion:

Corollary 2 Assuming a spherically symmetrical and
decreasing background distribution on U and equiprobable
keys, for a (U, �, ρ, ε, δ)QIM-fuzzy embedder, the most equi-
probable keys are attained by quantizing two dimensions at
a time, leading to

N (n) = 6�
n
2 �2(n−2� n

2 �)

different keys.

Proof Known upper bounds [17] on the kissing number in
n dimensions state that τ(n) ≤ 20.401n(1+o(1)). This means
that N (n) ≥ τ(n) in all dimensions, since N (n) ≈ 21.3n and
small dimensions can easily be verified by hand. Also note
that N (n1 + n2) ≤ N (n1)N (n2). Thus, quantizing dimen-
sions pairwise gives the largest number of equiprobable keys
for any spherically symmetric distribution.

Example Given a vector X = (X1, X2, . . . X10), there are
several choices when considering quantization. One possi-
bility is to quantize each of the elements Xi , i ∈ {1, 10}
independently. A second choice is to quantize pairs of ele-
ments (Xi , X j ) where i �= j and i, j ∈ {1, 10}. Another
option is to quantize three elements at a time (Xi , X j , Xs)

where i �= j �= s and i, j, s ∈ {1, 10}. We illustrate in this
example that the two-dimensional quantization is optimal in
the sense of Corollary 2. Table 1 shows the effect of quanti-
zation on the key space for different dimension choices.

– For two-dimensional quantization (Table 1), the kissing
number is equal to 6, the 10 elements of vector X are
grouped in 5 subsets of 2 elements each. For each sub-
set, we can embed at most 6 keys, and for the 5 pairs we
have in total a key space of 65 possible keys.

– For three-dimensional quantization (Table 1), kissing
number is 12, the 10 elements of X can be grouped as
3 pairs of 3 elements, and there is one vector element
left which can only be quantized in one dimension. The
number of possible keys is 123 × 2.

The result of Corollary 2, confirmed by our example,
shows that the best strategy for quantization is the two-
dimensional quantization. As this result points us to two
dimensions, we will give two practical constructions for the
two-dimensional case in the next section.

Table 1 Different choices for quantization and its effect of the key
space (maximum number of bits that can be embedded) for a 10-dimen-
sional vector X

Dimension σn Subsets Key space

1 2 1× 10 210 = 1024

2 6 2× 5 65 = 7776

3 12 3× 3+ 1 123 × 2 = 3456

4 24 4× 2+ 2 242 × 6 = 3456

5 40 5× 2 402 = 1600

6 72 6+ 4 72× 24 = 1728

7 126 7+ 3 126× 12 = 1512

8 240 8+ 2 240× 6 = 1440

9 272 9+ 1

10 >336 10

In the first column, we have the number of dimensions that are quan-
tized at a time, the second column gives the value of the kissing number
for the chosen dimension. The third column gives the particular choice
for grouping the subsets, and the forth column shows the size of the key
space

6 Practical constructions in two dimensions

In this section, we present two optimal constructions for the
QIM-fuzzy embedder in the two-dimensional space. The first,
7-hexagonal tiling, is optimal from reliability point of view,
while the second is optimal from the number of equiprob-
able keys it can embed and the sketch size. We choose a
hexagonal lattice to represent reconstruction points for the
QIM, since this gives both the smallest circle covering (for
the Embed procedure) and the densest circle packing (for
the Reproduce procedure).

The first construction, the 7-hexagonal tiling, can embed
n× log2 7

2 bits, where n is the dimensionality of random vari-
able X . This construction is optimal from the reliability point
of view. However, in this construction keys are not equiprob-
able, when the background distribution is not flat enough.
The second construction, the 6-hexagonal tiling, fixes this
problem but achieves a slightly lower key length of n× log2 6

2
bits.

In our constructions, the reconstruction points of all quan-
tizers are shifted versions of some base quantizer Q0. A dither
vector −→vk is defined for each possible r ∈ R. We define the
tiling polytope as the repeated structure in the space that is
obtained by decoding to the closest reconstruction point. It
follows from this definition that the tiling polytope contains
exactly one Voronoi region for each quantizer in the ensem-
ble. In Figs. 11 and 12, the tiling polytopes are delimited by
the dotted line.

The n-dimensional variable X = (X1, X2, . . . Xn) is par-
titioned into n

2 -two-dimensional subspaces (X1, X2). Each
subspace is considered separately. On the x-axis in Fig. 11
we have the values for X1, and on the y-axis we have the
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Fig. 11 Reproduce procedure of the 7-hexagonal tiling

Fig. 12 Reproduce procedure of the 6-hexagonal tiling

values of X2. Along the z-axis (not shown in the figure), we
have the joint probability density fX1 X2(x).

We start our construction by choosing the densest circle
packing existing in the two-dimensional space which is the
hexagonal packing. All circles have equal radius, and the
center of the circle is the reconstruction point. With each
reconstruction point, a key value is associated. However, the
circles do not tile the space. As a result when x , the realization
of X , falls into the non-covered region, it cannot be associ-
ated with any reconstruction point. We need to approximate
the circle with some polygons that tile the two-dimensional
space. In the two-dimensional space, the Voronoi region for
the hexagonal lattice is a hexagon.

In the two-dimensional space, there are only three such
regular polygons: triangles, squares, and hexagons. Since we
assume a spherical symmetrical distribution for fX1 X2 , the
hexagon is the best approximation to the circle from reliabil-
ity point of view. The next step is to associate a key value

to each hexagon such that for any value of (X1, X2), any
key label is at most at the given distance (sphere-covering
problem).

6.1 7-Hexagon tiling

Thus, our first construction is a dithered QIM defined as
an ensemble of 7 quantizers. The reconstruction points of
the base quantizer Q0 are defined by the lattice spanned
by the vectors

−→
B1 = (5,

√
3)q,
−→
B2 = (4,−2

√
3)q, where

q is the scaling factor of the lattice. In Fig. 11, these
points are labeled k0. The other reconstruction points of
quantizers Qi , i = 1, . . . , 6 are obtained by shifting the
base quantizer by the dither vectors {−→v1 , . . . ,−→v6 } such that
Qi (x) = Q0(

−→x + −→vi ). The values for these dither vec-
tors are: −→v0 = (0, 0),−→v1 = (2, 0),−→v2 = (−3,

√
3),−→v3 =

(−1,−√3),−→v4 = (−2, 0),−→v5 = (3,−√3), and −→v6 =
(1,
√

3). The embed and reproduce procedures work as in our
construction in Sect. 5. The reproduce procedure is shown in
Fig. 11.

6.2 6-Hexagon tiling

Assume that the background distribution is a spherical sym-
metrical distribution with mean centered in the origin of the
coordinates. In the construction above, the hexagon centered
in the origin will typically have a higher associated proba-
bility than the off-center hexagons. This effect grows as we
increase the scaling factor q of the lattice.

This construction eliminates the middle hexagon, to make
all keys equiprobable (see Theorem 1). The key length is
log2 6

2 bits. The tiling polytope is formed by 6 decision regions,
and thus there are only 6 dither vectors, see Fig. 12. The same
dither vectors, {−→v1 , . . . ,−→v6 } are used to construct the quan-
tizers, but the basic quantizer Q0 itself is not used. The embed
and reproduce procedures are defined as in Sect. 5.

6.3 Performance comparison

We compare the two constructions proposed above, i.e.,
the 7-hexagonal tiling (Fig. 11) and the 6-hexagonal tiling
(Fig. 12), in terms of reliability, min-entropy of the key and
entropy loss to the scalar quantization scheme introduced by
Linnartz et al. [19] on each dimension separately (we refer
to this as 4-square tiling).

To perform the comparison, we consider identically
and independently distributed (i.i.d.) Gaussian sources. We
assume the background distribution has mean (0, 0) and stan-
dard deviation σX1 X2 . Without loss of generality, we assume
that for any random (X1, X2) ∈ U 2, the probability distri-
bution of fX1 X2(x) has mean μ = (μ1, μ2) and standard
deviation σ 2

x . This model comes from biometrics, where the
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Fig. 13 Key length comparison for the threeQIM-fuzzy embedder con-
structions-scaled to one dimension

background distribution (also called imposter distribution)
describes all users, and the user distribution is the distribu-
tion of random variable X .

To evaluate the reliability relative to the quality of the
source data (amount of noise, measured in the terms of stan-
dard deviation from mean), we compute probabilities associ-
ated with equal area decision regions and the reconstruction
point centered in the mean μ of the distribution fX (x). The
curves in Fig. 15 are obtained by progressively increasing the
area of the Voronoi regions. The size of the Voronoi region
is controlled by the scaling factor of the lattice, q. The best
performance is obtained by the hexagonal decision regions.
This is because the regular hexagon best approximates a cir-
cle, the optimal geometrical form for a spherical symmetrical
distribution. However, the differences between reliability of
the three QIM-fuzzy embedders are small.

The min-entropy in r ∈ R is compared in Fig. 13 between
7-hexagonal tiling, 6-hexagonal tiling, and 4-square tiling.
Maximizing the min-entropy means minimizing the proba-
bility for an adversary to guess the key correctly on her first
try. The key length for the 7-hexagonal tiling decreases rap-
idly with the increase in the lattice scaling factor q relative to
σX1 X2 . While for a small lattice the scaling factor q, one can
approximate the background distribution as uniform, with
the increase in scaling the center hexagon has a substantially
higher probability associated with it, and thus one key value
is more likely than all the others.

The 6-hexagonal tiling construction eliminates the middle
hexagon, and as a result all keys become equiprobable, at the
cost of a somewhat lower reliability, see Fig. 15.

Finally, we evaluate the mutual information for the key
when publishing the sketch for the three constructions com-
pared. The results are shown in Fig. 14. The values are scaled
to the number of bits lost from each bit that is made public.
The results are somewhat surprising in the sense that the
4-square tiling looses more bits compared to our two new
constructions. The reason is that while the size of the public
sketch p is equal for all three constructions, thus they all lose
the same amount of information but the key length differs
(Fig. 15).

Fig. 14 Mutual information between the key and the public sketch for
the three QIM-fuzzy embedders

Fig. 15 Reliability of the three QIM-fuzzy embedder constructions

7 Conclusions

We propose the notion of a fuzzy embedder as a generaliza-
tion of a fuzzy extractor. Fuzzy embedders solve two prob-
lems encountered when fuzzy extractors are used in practice:
(1) a fuzzy embedder naturally supports renewability and
(2) it supports direct analysis of quantization effects. This is
made possible by embedding a key instead of extracting one,
and by making no limiting assumptions about the nature of
the input source.

We give a general construction of a fuzzy embedder, using
a QIM to construct the Embed and Reproduce procedures.
The QIM performance measures (from watermarking) can be
directly linked to the reliability and security properties of the
constructed fuzzy embedder.

This construction gives a deep insight into the trade-offs
between the parameters of a fuzzy embedder. We describe the
key length-entropy loss trade-off as a simultaneous sphere-
packing/sphere-covering problem, and we show that when
considering equiprobable keys, quantizing dimensions pair-
wise gives the largest key length.

We also give two explicit, two-dimensional constructions,
which can embed a longer key per dimension than existing
(one-dimensional) schemes. The 7-hexagonal tiling scheme
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achieves the optimal probability of detection but only per-
forms well if the underlying background distribution is flat
enough. We show that our 6-hexagonal tiling scheme is opti-
mal from a key length perspective, given that each key is
equiprobable. Using the 6-hexagonal construction, we obtain
log26

2 bits per dimension of the input data, which is superior
compared to the single bit obtained by the shielding scheme.

We propose a new, holistic model, the fuzzy embedder,
that encompasses both the theoretical clarity and the practical
needs of a template protection scheme.
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