Skip to main content
Log in

Randomized gossip algorithms under attack

  • Regular Contribution
  • Published:
International Journal of Information Security Aims and scope Submit manuscript

Abstract

Recently, gossip-based algorithms have received significant attention for data aggregation in distributed environments. The main advantage of gossip-based algorithms is their robustness in dynamic and fault-prone environments with unintentional faults such as link failure and channel noise. However, the robustness of such algorithms in hostile environments with intentional faults has remained unexplored. In this paper, we call attention to the risks which may be caused by the use of gossip algorithms in hostile environments, i.e., when some malicious nodes collude to skew aggregation results by violating the normal execution of the protocol. We first introduce a model of hostile environment and then examine the behavior of randomized gossip algorithms in this model using probabilistic analysis. Our model of hostile environment is general enough to cover a wide range of attacks. However, to achieve stronger results, we focus our analysis on fully connected networks and some powerful attacks. Our analysis shows that in the presence of malicious nodes, after some initial steps, randomized gossip algorithms reach a point at which the lengthening of gossiping is harmful, i.e., the average accuracy of the estimates of the aggregate value begins to decrease strictly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. For example, the Sybil attack can be prevented by assigning a central authority for managing identities, or mitigated by increasing the cost of obtaining new identities. DoS attacks can be mitigated by enhancing computation and communication capacities. Hyperactive nodes can be detected through data sharing between nodes. Moreover, when data sharing is not feasible, the effect of hyperactive nodes can be reduced by forcing nodes to run the averaging algorithm as fast as possible.

References

  1. Aysal, T.C., Barner, K.E.: Convergence of consensus models with stochastic disturbances. IEEE Trans. Inf. Theory 56(8), 4101–4113 (2010)

    Article  MathSciNet  Google Scholar 

  2. Aysal, T.C., Coates, M.J., Rabbat, M.G.: Distributed average consensus with dithered quantization. IEEE Trans. Signal Process. 56(10), 4905–4918 (2008)

    Article  MathSciNet  Google Scholar 

  3. Aysal, T.C., Yildiz, M., Sarwate, A., Scaglione, A.: Broadcast gossip algorithms for consensus. IEEE Trans. Signal Process. 57(7), 2748–2761 (2009)

    Article  MathSciNet  Google Scholar 

  4. Benezit, F., Dimakis, A.G., Thiran, P., Vetterli, M.: Order-optimal consensus through randomized path averaging. IEEE Trans. Inf. Theory 56(10), 5150–5167 (2010)

    Article  MathSciNet  Google Scholar 

  5. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Trans. Inf. Theory 52(6), 2508–2530 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, J., Pandurangan, G., Xu, D.: Robust computation of aggregates in wireless sensor networks: distributed randomized algorithms and analysis. IEEE Trans. Parallel Distrib. Syst. 17(9), 987–1000 (2006)

    Article  Google Scholar 

  7. Cybenko, G.: Load balancing for distributed memory multiprocessors. J. Parallel Distrib. Comput. 7, 279–301 (1989)

    Article  Google Scholar 

  8. Dimakis, A., Kar, S., Moura, J., Rabbat, M., Scaglione, A.: Gossip algorithms for distributed signal processing. Proc. IEEE 98(11), 1847–1864 (2010)

    Article  Google Scholar 

  9. Dudley, R.M.: Real analysis and probability. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  10. Fagnani, F., Zampieri, S.: Average consensus with packet drop communication. SIAM J. Control Optim. 48(1), 102–133 (2007)

    Google Scholar 

  11. Hatano, Y., Das, A.K., Mesbahi, M.: Agreement in presence of noise: pseudogradients on random geometric networks. In: Proceedings of the 44th IEEE Conference on Decision and Control, and 2005 European Control Conference (2005)

  12. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

    Google Scholar 

  13. Kar, S., Moura, J.M.F.: Distributed average consensus in sensor networks with random link failures and communication channel noise. In: Proceedings of the 41st Asilomar Conference on Signals, Systems Computer, pp. 676–680 (2007)

  14. Kempe, D., Dobra, A., Gehrkey, J.: Gossip-Based computation of aggregate information. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer, Science, pp. 482–491 (2003)

  15. Przydatek, B., Song, D., Perrig, A.: SIA: Secure information aggregation in sensor networks. In: Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, pp. 255–265 (2003)

  16. Rajagopal, R., Wainwright, M.J.: Network-based consensus averaging with general noisy channels. IEEE Trans. Signal Process. 59(1), 350–364 (2011)

    Article  MathSciNet  Google Scholar 

  17. Sakuma, J., Kobayashi, S.: Large-scale k-means clustering with user-centric privacy-preservation. Knowl. Inf. Syst. 25, 253–279 (2010)

    Article  Google Scholar 

  18. Ustebay, D., Oreshkin, B., Coates, M., Rabbat, M.: Greedy gossip with eavesdropping. IEEE Trans. Signal Process. 58(7), 3765–3776 (2010)

    Article  MathSciNet  Google Scholar 

  19. Wagner, D.: Resilient aggregation in sensor networks. In: Proceedings of the 2nd ACM Workshop on Security of Ad Hoc and Sensor, Networks, pp. 78–87 (2005)

  20. Xiao, L., Boyd, S., Kim, S.-J.: Distributed average consensus with least-mean-square deviation. J. Parallel Distrib. Comput. 67(1), 33–46 (2007)

    Article  MATH  Google Scholar 

  21. Yildiz, M.E., Scaglione, A.: Coding with side information for rate constrained consensus. IEEE Trans. Signal Process. 56(8), 3753–3764 (2008)

    Article  MathSciNet  Google Scholar 

  22. Zhou, R., Hwang, K., Cai, M.: GossipTrust for fast reputation aggregation in peer-to-peer networks. IEEE Trans. Knowl. Data Eng. 20(9), 1282–1295 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Iran Telecommunication Research Center Grant T-500-19242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousa Mousazadeh.

Appendices

Appendix A: Proof of Theorem 3

Proof

We use conditional expectation to prove the theorem. Let the event \(\mathcal {A}\) occur at \(t+1\), \(i\) and \(j\) be the participants of the gossip update, and \(x(t)=x=(x_1,\ldots ,x_n)\). Then,

$$\begin{aligned}&ASE(t\!+\!1|i\in \mathcal {H},j\!\in \! \mathcal {H},x(t)=x) \!=\! \frac{1}{n}\sum _{k=1}^{n}\left( x_k^{t+1}\!-\!\overline{x}(0)\right) ^2\\&\quad = ASE(t) +\frac{1}{n}\left( 2 \left( \frac{x_i+x_j}{2}-\overline{x}(0)\right) ^2 -\left( x_i-\overline{x}(0)\right) ^2\right. \\&\quad \quad \quad \quad \quad \qquad \quad \quad \quad \quad -\left. \left( x_j-\overline{x}(0)\right) ^2\right) . \end{aligned}$$

Then, by taking the expectation over all \(i,j\in \mathcal {H}\), and applying straightforward calculations, we have

$$\begin{aligned} E[\textit{ASE}(t\!+\!1)|\mathcal {A},x(t)=x]&= \left( 1\!-\!\frac{1}{n}\right) ASE(t)+\frac{1}{n}S(t). \end{aligned}$$

Taking the expectation over \(x\) yields

$$\begin{aligned} E[\textit{ASE}(t+1)|\mathcal {A}]= \left( 1-\frac{1}{n}\right) E[\textit{ASE}(t)]+\frac{1}{n}E[S(t)].\nonumber \\ \end{aligned}$$
(30)

Now, suppose the event \(\mathcal {B}\) occurs at \(t+1\), \(i\in \mathcal {H}\) and \(j\in \mathcal {M}\) be the participants of the gossip update, \(x_j^t=x_m\), and \(x(t)=x=(x_1,\ldots ,x_n)\). Then,

$$\begin{aligned}&ASE\left( t+1|i\in \mathcal {H},x_j^t=x_m,x(t)=x\right) \\&\quad = \frac{1}{n}\sum _{k=1}^{n}(x_k^{t+1}-\overline{x}(0))^2 \\&\quad = ASE(t)+\frac{1}{n} \left( -\left( x_i-\overline{x}(0)\right) ^2+ \left( \frac{x_i+x_m}{2}-\overline{x}(0)\right) ^2\right) \\&\quad = ASE(t)-\frac{3}{4n} \left( x_i-\overline{x}(0)\right) ^2+\frac{1}{4n} \left( x_m-\overline{x}(0)\right) ^2 \\&\quad \quad +\frac{1}{2n} \left( x_m-\overline{x}(0)\right) \left( x_i-\overline{x}(0)\right) . \end{aligned}$$

On the other hand,

$$\begin{aligned} E\left[ \left( x_m-\overline{x}(0)\right) ^2\right] = \sigma _m^2+\left( \mu _m-\overline{x}(0)\right) ^2. \end{aligned}$$

Then, taking the expectation over \(x_m\) yields

$$\begin{aligned}&ASE(t+1|i\in \mathcal {H},j\in \mathcal {M},x(t)=x)\\&\quad =ASE(t)-\frac{3}{4n}\left( x_i-\overline{x}(0)\right) ^2+\frac{1}{4n} \!\left( \sigma _m^2+\left( \mu _m-\overline{x}(0)\right) ^2\!\right) \\&\qquad +\frac{1}{2n}\left( \mu _m-\overline{x}(0)\right) \left( x_i-\overline{x}(0)\right) . \end{aligned}$$

Taking the expectation over all \(i\in \mathcal {H}\) and \(j\in \mathcal {M}\), and then taking the expectation over \(x\), implies

$$\begin{aligned} E[\textit{ASE}(t+1)|\mathcal {B}]&= \left( 1-\frac{3}{4n}\right) E[\textit{ASE}(t)] \nonumber \\&+\frac{1}{4n}\left( \sigma _m^2+\left( \mu _m-\overline{x}(0)\right) ^2\right) \nonumber \\&+\frac{1}{2n} \left( \mu _m-\overline{x} (0)\right) \left( E[\overline{x}(t) ]-\overline{x}(0)\right) .\nonumber \\ \end{aligned}$$
(31)

If the event \(\mathcal {C}\) occurs, \(\textit{ASE}(t)\) remains unchanged, and then

$$\begin{aligned} E[\textit{ASE}(t+1)|\mathcal {C}]=E[\textit{ASE}(t)]. \end{aligned}$$
(32)

Putting together all the pieces yields:

$$\begin{aligned} E[\textit{ASE}(t+1)]&= +\Pr (\mathcal {A})E[\textit{ASE}(t+1)|\mathcal {A}]\\&+\Pr (\mathcal {B})E[\textit{ASE}(t+1)|\mathcal {B}] \\&+\Pr (\mathcal {C})E[\textit{ASE}(t+1)|\mathcal {C}] \end{aligned}$$

Then, using (11), (30), (31), and (32), we have

$$\begin{aligned} E[\textit{ASE}(t+1)]&= \left( 1-\frac{1+\frac{p}{2}}{N}\right) E[\textit{ASE}(t)] \\&+\frac{1-p}{N} E[S(t)]+\frac{p}{2N} \sigma _m^2 \\&+\frac{p}{N} \left( \frac{3}{2}-c^t \right) \left( \mu _m-\overline{x}(0)\right) ^2. \end{aligned}$$

To obtain \(E[S(t+1)]\), we should first compute \(E[S(t+1)|\mathcal {A}]\), \(E[S(t+1)|\mathcal {B}]\), and \(E[S(t+1)|\mathcal {C}]\). Due to its similarity to \(E[\textit{ASE}(t+1)]\), we present only the results and omit the proofs.

$$\begin{aligned} E[S(t+1)|\mathcal {A}]&= E[S(t)],\end{aligned}$$
(33)
$$\begin{aligned} E\left[ S(t+1)|\mathcal {B}\right]&= \left( 1-\frac{1}{n}\right) E[S(t)]+\frac{1}{4n^2} E[\textit{ASE}(t)] \nonumber \\&+\frac{1}{n}(1-c^t )\left( \mu _m-\overline{x}(0)\right) ^2+\frac{1}{4n^2} \sigma _m^2\nonumber \\&-\frac{1}{2n^2}\left( \frac{1}{2}-c^t\right) \left( \mu _m-\overline{x}(0)\right) ^2, \end{aligned}$$
(34)
$$\begin{aligned} E[S(t+1)|\mathcal {C}]=E[S(t)]. \end{aligned}$$
(35)

On the other hand,

$$\begin{aligned} E[S(t+1)]&= +\Pr (\mathcal {A})E[S(t+1)|\mathcal {A}]\\&+\Pr (\mathcal {B})E[S(t+1)|\mathcal {B}] \\&+\Pr (\mathcal {C})E[S(t+1)|\mathcal {C}] \end{aligned}$$

Thus, using (33), (34), and (35), we have

$$\begin{aligned} E[S(t+1) ]&= \left( 1-\frac{2p}{N}\right) E[S(t)]+\frac{p}{2nN}E[\textit{ASE}(t)] \\&+\frac{2p}{N}\left( 1-c^t-\frac{1}{4n}+\frac{1}{2n}c^t\right) \left( \mu _m-\overline{x}(0)\right) ^2 \\&+\frac{p}{2nN}\sigma _m^2. \end{aligned}$$

This relation completes the proof. \(\square \)

Appendix B: Proof of Lemma 4

Proof

Let the event \(\mathcal {B}\) occur at \(t+1\), \(i\in \mathcal {H}\) and \(j\in \mathcal {M}\) be the participants of the gossip update, \(x_j^t=x_m\), and \(x(t)=x=(x_1,\ldots ,x_n)\). Then,

$$\begin{aligned}&S\left( t\!+\!1|i\in \mathcal {H},x_j^t\!=\!x_m,x(t)\!=\!x\right) \!=\! \left( \frac{1}{n}\sum _{k=1}^{n}x_k^{t+1}\!-\!\overline{x}(0)\right) ^2\\&\quad = \left( \frac{1}{n}\sum _{k=1}^{n}x_k -\frac{x_i}{n}+\frac{x_i+x_m}{2n}-\overline{x}(0)\right) ^2 \\&\quad = \left( \overline{x}(t) -\overline{x}(0)+\frac{x_m-x_i}{2n}\right) ^2 \\&\quad = \left( \overline{x}(t) -\overline{x}(0)\right) ^2+ 2\left( \overline{x}(t) -\overline{x}(0)\right) \left( \frac{x_m-x_i}{2n}\right) \\&\qquad +\left( \frac{x_m-x_i}{2n}\right) ^2 \\&\quad \ge S(t)+\frac{1}{n} \left( \overline{x}(t)-\overline{x}(0)\right) \left( x_m-x_i\right) . \end{aligned}$$

Taking the expectation over \(x_m\), we have

$$\begin{aligned}&E\left[ S(t+1)|i\in \mathcal {H},\; j\in \mathcal {M},x(t)=x\right] \\&\quad \ge S(t)+\frac{1}{n}\left( \overline{x}(t)-\overline{x}(0)\right) \left( \mu _m-x_i\right) \end{aligned}$$

Taking the expectation over all \(i\in \mathcal {H}\) and \(j\in \mathcal {M}\), we have

$$\begin{aligned}&E[S(t+1)|\mathcal {B},x(t)=x]\\&\quad \ge S(t)+\frac{1}{n} \left( \overline{x}(t)-\overline{x}(0)\right) \left( \mu _m-\overline{x}(t)\right) . \end{aligned}$$

Taking the expectation over \(x\), and using (11), we have

$$\begin{aligned}&E[S(t+1)|\mathcal {B}]\\&\quad \ge E[S(t)]+ \frac{1}{n} \left( E[\overline{x}(t)]-\overline{x}(0)\right) \left( \mu _m-E[\overline{x}(t)]\right) \\&\quad =E[S(t)]\!+\!\frac{1}{n}(1\!-\!c^t )c^t\left( \mu _m\!-\!\overline{x}(0)\right) ^2 \end{aligned}$$

Hence, \(E[S(t+1)|\mathcal {B}]>E[S(t)]\). On the other hand, due to (33) and (35), if the event \(\mathcal {A}\) or the event \(\mathcal {C}\) occurs at \(t+1\), then \(E[S(t)]\) remains unchanged. Therefore, \(E[S(t+1)]>E[S(t)]\) for any \(t\ge 0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mousazadeh, M., Tork Ladani, B. Randomized gossip algorithms under attack. Int. J. Inf. Secur. 13, 391–402 (2014). https://doi.org/10.1007/s10207-013-0221-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10207-013-0221-x

Keywords

Navigation