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Abstract The growing number of Internet users and

the prevalence of web applications make it necessary

to deal with very complex software and applications

in the network. This results in an increasing number

of new vulnerabilities in the systems, and leading to

an increase in cyber threats and, in particular, zero-

day attacks. The cost of generating appropriate signa-

tures for these attacks is a potential motive for using

machine learning-based methodologies. Although there

are many studies on using learning-based methods for

attack detection, they generally use extracted features

and overlook raw contents. This approach can lessen

the performance of detection systems against content-

based attacks like SQL injection, Cross-site Scripting

(XSS), and various viruses.

In this work, we propose a framework, called deep

intrusion detection (DID) system, that uses the pure

content of traffic flows in addition to traffic metadata

in the learning and detection phases of a passive DNN

IDS. To this end, we deploy and evaluate an offline IDS

following the framework using LSTM as a deep learning

technique. Due to the inherent nature of deep learning,

it can process high dimensional data content and, ac-

cordingly, discover the sophisticated relations between

the auto extracted features of the traffic. To evaluate

the proposed DID system, we use the CIC-IDS2017

and CSE-CIC-IDS2018 datasets. The evaluation met-
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rics, such as precision and recall, reach 0.992 and 0.998

on CIC-IDS2017, and 0.933 and 0.923 on CSE-CIC-

IDS2018 respectively, which show the high performance

of the proposed DID method.
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1 Introduction

We live in the cyber era in which network-based tech-

nologies have become omnipresent. Meanwhile, threats

and attacks are rapidly growing in the cyberspace.

Nowadays, mainly signature-based intrusion detection

systems (IDSs) are used to detect these malicious

traffic. However, since new vulnerabilities and, conse-

quently, zero-day attacks appear each day, the cost of

generating accurate signatures with a low false-positive

rate is growing.

The traditional approach to intrusion detection sys-

tems is based on detecting some form of a signature. A

signature is extracted from the known attacks by em-

ploying security experts. A signature must completely

cover different variants of the attack for which it has

been extracted. Also, benign traffic and other types of

attacks should not be falsely confused with it. Hence,

extracting an accurate signature is a complicated and

time-consuming process. By the increasing growth of

the Internet’s applications and users, more vulnerabil-

ities are expected to appear, which results in emerg-

ing more new attacks. Therefore, the signature extrac-

tion process becomes a more challenging problem in the

coming years.
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The learning-based approach is an alternative solu-

tion to the signature-based intrusion detection systems.

In addition to resolving the signature extraction prob-

lem, some learning approaches can also detect zero-day

attacks by determining abnormal traffic.

There are several research studies on the use of ma-

chine learning methods to detect intrusions in computer

networks. Among them, we can mention pioneers like

Bayesian networks [25], support vector machine (SVM)

[21], decision trees [49], and the new deep learning

techniques (e.g., see [6] and [39]). These studies gen-

erally focus on some specific features of traffic as in-

puts, and they usually have a low potential to detect

content-based attacks. However, it is well known that

the content-based attacks, like SQL injection, malicious

software, and viruses are the most destructive attacks

against assets that are accessible on the Internet.

According to our study, only a few of previous

learning-based works on IDSs have considered content-

based attacks. These works, like [46], [45], [38], and [15],

use n-gram methods for extracting the frequencies of

characters in deterministic windows. However, as shown

in [42], n-gram methods are vulnerable to mimicry at-

tacks. In these kinds of attacks, some unused parts of

packets like IP options or PADDING parts in exploits

can be used for adjusting the frequencies of n-grams.

A severe obstacle for analyzing the contents of net-

work traffic is the large dimension of payloads. Nowa-

days, this challenge can be handled effectively by em-

ploying Deep Learning techniques [10,34]. In this pa-

per, a deep learning-based intrusion detection method,

called deep intrusion detection (DID) system is pro-

posed. It uses the pure content of traffic (i.e., packet

payload) as the input data. In the pre-processing phase,

the content of each flow is converted to a numerical ma-

trix. The learning and detection phases use this matrix

for separating normal traffic from the malicious one.

In this work, our primary contribution is to use all

content bytes of traffic during the learning and detec-

tion phases. This goal is achieved by employing deep

learning methods (in particular, in this work, we lever-

age using the LSTM neural network). Besides, we pro-

pose an appropriate pre-processing phase for feeding

the traffic flows into the learning models. There are

many studies around using deep learning models in IDS

scope, as are reviewed in this paper. Still the main nov-

elty of this paper is the use of the enriched raw content

bytes of flows (not pre-extracted features) as the input,

and the ability to distinguish the content-based attacks.

Finally, we evaluate our proposed scheme on the CIC-

IDS2017 dataset [40]. This dataset has an appropriate

variety of full captured normal and attacks traffic; in

particular, it contains some content-based attacks like

Heartbleed.

The remainder of the paper is organized as follows.

In Section 2, we summarize the most relevant related

works. Section 3 presents the details of the proposed

DID system. This system also includes a pre-processing

phase for preparing contents of traffic flows to be fed to

a deep learning model (i.e., an LSTM neural network).

In Section 4, the conducted experiments and results

obtained are discussed. Finally, Section 5 concludes the

paper and explains the possible future directions.

2 Related Works

In the following, we will review some of the learning-

based approaches used in intrusion detection systems.

2.1 Traditional Machine Learning Approach

In the literature, various learning-based techniques such

as support vector machine (SVM), naive Bayes, decision

tree, random forest, and neural networks have been pro-

posed for intrusion detection systems.

SVM is one of the most popular classification algo-

rithms used so far. It has been used in research studies

like [21], [13], [26] and [44]. In this algorithm, the clas-

sification process is performed by detecting a set of hy-

perplanes, as separators, in a high-dimensional space.

The high time-complexity of the learning phase and

the difficulty of finding a suitable kernel function are

the most important challenges of this method. Learn-

ing time complexity has a superlinear relation with the

number of input instances. Besides, there is a quadratic

relation between the size of the kernel matrix and the

number of instances.

Bayesian classifiers [22] use Bayes’ rule for predict-

ing the membership of input data to classes. They

are built by using expert knowledge or efficient algo-

rithms that perform inference. In Naive Bayesian classi-

fiers, features are assumed to be conditionally indepen-

dent. Though this assumption is not satisfied in prac-

tice, however, experiments have proved its good perfor-

mance. Many papers have used this technique, e.g., see

[32] and [25].

Authors in [32] have suggested generating multi-

Bayesian network models in which each one separately

generates an anomaly score for the input traffic. In [25],

an IDS based on Bayesian network classifiers is pro-

posed. In this research, association rules are used for

the detection of normal/intrusion traffic. New traffic

will get a low probability level for each of the normal

or attack groups. So, these suspicious connections will
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also be labeled as an attack. In the second phase, these

attacks are classified into four known or unknown at-

tack categories by Bayesian rules.

One of the main data mining techniques used in

intrusion detection systems is associated with decision

trees. In [33], the misuse detection engine of Snort [3] is

replaced by decision trees. Firstly, the existing rules are

provided to a clustering algorithm to reduce the com-

parison needed to determine rules that are triggered

by specific input data. These clusters are based on the

values of important features. When the clustering al-

gorithm reaches a rule set for the given feature of the

input data, the decision tree determines the triggered

rules inside that cluster.

Random forests (RF) [12] consist of a collection of

decision trees. In addition to good performance in com-

parison with SVM and neural networks (NNs), this ap-

proach can run efficiently on large datasets with many

features. RF is robust against overfitting and can han-

dle unbalanced data. Works like [49] and [17] use this

technique.

Artificial neural networks (ANNs) were the most

popular models used until the 1990s when SVM was

invented. One of the benefits of SVM against ANN is

its lower learning time besides having a less local min-

imum problem. However, with the emergence of new

ANN variants like recurrent and convolutional NNs, the

ANNs have begun to be used again.

In [35], a detector for finding attacks on Telnet is

proposed. This system extracts 89 pre-defined keywords

from the Telnet sessions. These keywords represent the

suspicious actions or well-known attacks in Telnet. Af-
ter extracting the distribution of these keywords, their

statistics are given to a binary neural network. Finally,

the instances recognized as attacks are given to a sec-

ondary NN, which determines the class name of the

attack. They have finally obtained detection rates up

to 80%.

ANNs can also be used for the detection of DoS

attacks like SYNFLOOD, UDPSTORM, and SMURF

(for example, see [11]). For this purpose, authors of

[11] use a time window, which is then labeled as nor-

mal or attack traffic. Since the input size of an ANN

is fixed, they use a pre-processing phase with the aid

of an anomaly-based ANN, namely, a self-organization

map (SOM). SOM can cluster the input data into a

fixed number of clusters. Hence, independently from

the number of packets in the time window, a fixed num-

ber of inputs is provided for the ANN by this cluster-

ing technique. The model is evaluated by DARPA 1999

dataset [36] and reaches 100% detection of normal traf-

fic and 76% false-positive rate for attacks.

In 2017, feature reduction techniques had been pro-

posed by using ANNs [7]. The authors use a combi-

nation of information gain and correlation for feature

selection. Then, after normalizing the numbers of each

class in the KDD99 dataset [2], their model achieves

the average recall value of 91.72%.

2.2 Deep Learning Approach

The recurrent neural network (RNN) is a class of ANNs

in which nodes have some amount of memory. As a re-

sult, in addition to the current input, the previous in-

puts can also influence the current output. These net-

works are suitable for sequential inputs that possess

a dependency with each other. Long short-term mem-

ory (LSTM) network is a class of RNNs [23]. LSTM

has been proposed to solve the vanishing and exploding

gradient by introducing some gates to the neural net-

work structure. Therefore, LSTM can effectively learn

the relations between items that are far away from each

other in a sequence. Computer network flows, consisting

of packets, form a sequence of data; hence, RNN and

LSTM are natural candidates for analyzing of computer

network traffics.

Authors of [6] have employed gated recurrent unit

(GRU), which is a variant of LSTM. They have slightly

modified GRU and used SVM as a classifier instead of

the softmax function. The goal of this modification is

to increase the computational efficiency of the model.

They have evaluated the proposed model with 2013 net-

work traffic data obtained by the honeypot systems at

Kyoto University. The inputs of this model are 24 sta-

tistical features of the dataset. For improving perfor-

mance and reducing the computation cost of the mode,

the continuous features are converted to bins and, fi-

nally, are represented in a one-hot format. Their model

has an average accuracy of 80.53%.

In another work, Kim et al. [30] have applied LSTM

architecture in IDS and use the KDD99 dataset for eval-

uating their proposed model. Their input vector con-

tains 41 normalized features, and the output vector is

composed of 4 attack classes and one non-attack class.

In their evaluation, the average values of recall and fall-

out are 98.79% and 10%, respectively.

In [43], the authors use deep learning for detect-

ing anomalies in a software-defined network (SDN) en-

vironment. They use six basic features of the NSL-

KDD dataset (duration, protocol type, SRC bytes, DST

bytes, count, and SRV count) to detect anomaly flows.

Finally, the attack detection accuracy is reported as

75.75%.

Also, in some other research studies like [8], [24],

and [31], the deep learning approach is employed for
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the reduction of input dimensions by selecting among

pre-extracted features.

The authors of [29] propose a scalable hybrid IDS

with two-stages: the first stage is the anomaly detector

module implemented by Spark ML traditional machine

learning models; the next stage is the misuse detector,

which is based on the Conv-LSTM network. Their eval-

uation is based on ISCX IDS 2012 dataset with 10-fold

cross-validation tests. The results show a 97.29% detec-

tion rate of attacks and a 0.71% of false alarm rate.

Although deep learning methods have been pro-

posed for solving intrusion detection problems so far, to

the best of our knowledge, they use extracted features

of inputs, as in traditional approaches. These features

mostly represent general aspects of traffic flow, like

source/destination port/IP address, duration time,

start time, and packet/byte number of sent or re-

ceived packets. These features are generally crucial to

the detection of some kinds of attacks like DDoS and

portscan. However, many important attacks, like SQL

injections, worms, viruses, and XSS, which are content-

based attacks, have general features very similar to be-

nign traffics. In the following, some traditional research

studies which have paid attention to these kinds of at-

tacks are reviewed.

2.3 Content-Based Approach

Generally, some restricting extracted features are used

in machine learning-based intrusion detectors. These

general features are rarely based on contents trans-

mitted through the established flow. Consequently,

content-based attacks have a high impact on the se-

curity and privacy of network applications and services

in such systems.

In the following, we review some related works on

content inspection for intrusion detection. Most of the

payload-based detectors extract statistical features by

using the n-gram technique. PYLE [46], Anagram [45],

and McPAD [38] are among the most well-known works.

PYLE uses 1-gram method and extracts the frequency

of values in each byte of the packet. Anagram uses 5-

gram and stores the extracted 5-grams in Bloom filters.

There are two kinds of Bloom filters in this work: one

designed for attacks and the other for benign n-grams.

Finally, these two Bloom filters examine the input traf-

fic.

It is evident that in n-gram analysis, the dimension

of feature space grows dramatically. Hence, limited by

the curse of dimensionality problem, in practice, this

approach can be used at most for n = 2, which yields

65536 features. To mitigate this problem, McPAD [38]

measures the frequency of the occurrences of pairs of

symbols (bytes), which are k bytes apart from each

other in the payload. In this way, some information in

n-grams with n > 2 can be extracted by such pairs of

bytes. Moreover, this method will only generate 2562

features regardless of the value of k.

In [42], the authors show that blending attacks can

defeat n-gram methods. These attacks fill unused parts

of network traffics with new characters in proportion

to the target frequency and, consequently, convert the

statistics of characters to become similar to benign traf-

fics. Their evaluation shows that to launch an attack

against a 5-gram detector, at least two packets (i.e.,

about 2000 bytes) are needed. Besides, they propose

fragmentation overlapping for solving larger values of

n. Different operating systems (OSs) have different be-

haviors for extracting bytes in overlapping situations.

They may prefer the first or last arrived overlapped

bytes. The other bytes will be ignored by the OS. So

these ignored bytes can be used in higher values of n

for deluding the n-gram detectors.

In another research [41], after encoding the content

by Base64, the integer values are extracted. Finally, the

frequencies of these integer values are enumerated. Even

though authors do not mention an n-grams method, but

in fact, they use a 1-gram approach.

Another related work is [9]. This paper focuses on

false data injection attacks (FDIA) on phasor measure-

ment units (PMU), which are utilities for monitoring

power systems. In this paper, CNN is compared with

RNN, LSTM, and traditional classifiers such as SVM.

PMU packet data consists of d different instances of

data items, including n univariate voltage and current

phasor data stream. Finally, this work proposes a CNN

model with 2 CNN layers, a dropout probability of 0.5,

and a fully connected layer with 512 neurons, which

achieves a 98.67% accuracy.

3 METHODOLOGY

The high dimensionality of traffic content is one of

the biggest challenges in the detection of content-based

attacks. Although this challenge can be addressed by

employing deep learning methodology, according to

our survey, all the previous proposed studies have fo-

cused on pre-extracted features which are vulnerable to

content-based attacks.

In this work, we propose a deep learning-based IDS

method to extend the detection scope by covering the

content-based attacks as well. Since traffic contents

can have long-time dependencies, input feature space

should have a high dimension. As deep learning meth-

ods are designed for such large data spaces, we propose
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using deep learning techniques directly on the raw bytes

of contents instead of applying it to the extracted traffic

features. The proposed method is called deep intrusion

detection (DID). This method can be applied to both

passive and on-line traffic. In this research, the passive

mode is followed, as illustrated in Figure 1.

Pcap File Flow Splitter
Enriched Normaized 

Matrix per Flow Deep Learning Model

Labeled
Flows

Fig. 1 General illustration of DID system in the passive
mode.

Since traffic flows consist of sequences of data, al-

gorithms like RNN and LSTM that are developed for

sequential data are among the best candidates for the

DID approach. In the following, we describe the pro-

posed DID approach and explain how it uses deep learn-

ing methods to detect content-based attacks. In the fol-

lowing, we have two main subsections. The first one

provides a complete description of the pre-processing

module, and the second highlights the deep learning

module of DID. In particular, in this work, we will em-

ploy LSTM for the deep learning module of DID. How-

ever, it should be noted that DID is not limited to use

LSTM, rather, other algorithms can also be employed

in the deep learning module.

3.1 Pre-processing Phase in Deep Intrusion Detection

Traditional learning methods highly depend on the pre-

extracted features. As a result, the accuracy of such

algorithms depends heavily on the selection of input

features. Hence, these features should be found and ex-

tracted by experts, which makes the process expensive,

time-consuming, and prone to error. Moreover, due to

the increase of variant of known attacks and the emer-

gence of new ones, extracting some static and definite

features cannot provide adequate information for intru-

sion detection tasks.

In contrast, deep learning algorithms can extract

complicated features from the raw data automatically.

Consequently, to address the above issues, DID uses

deep learning techniques to learn various cyber-attacks,

including content-based attacks. It is well known that

deep learning algorithms can detect sophisticated rela-

tions in high dimensional spaces. Hence, they are good

candidates for the detection of content-based attacks.

Although some content-based intrusion detection

systems like [46], [45], and [38] focus on packet-level

granularity, in real-world, some packets can belong to

both benign and attack flows (e.g., SYN or FIN pack-

ets, or HTTP GET requests in DDoS attacks). More-

over, some attacks are distributed among more than

one packet. Therefore, the concept of malicious traffic

resides in the flow contents. As a result, we assume that

the input to the DID method is based on flows instead

of packets.

3.1.1 Basic Normalized Matrix

In this work, we propose an offline version of DID,

where each flow is considered as an input sequence to an

LSTM neural network. Each packet represents a data

point in the input sequence. Since the maximum Ether-

net frame size is around 1514 bytes, so we consider 1514

as the dimension for each packet. Hence, the input is

assumed to be a sequence of 1514-dimensional points.

Additionally, the size of input sequences depends on

the number of packets in the traffic flows. In the offline

DID, we assume some reasonable maximum value for

the number of packets (which we will later determine

this parameter by inspecting the dataset). Finally, since

each byte is in the range of 0 to 255, in order to improve

the deep network performance and make the parame-

ters on the same scale, we normalize each byte value to

a number between 0 and 1, by dividing it to 255.

According to the pre-processing phase explained

above, we have a normalized matrix per each flow (as

depicted in Figure 2), where rows describe different

packets in the flow, and the ith column contains the

normalized value of the ith bytes of packets. Moreover,

we add a column to the matrix for storing inter-arrival

times of packet flows to detect attacks such as HTTP

flooding, which sends some benign requests continu-

ously over the established connection. These normalized

matrices can be the input of the deep learning module

of DID (we will later enrich these matrices).

Considering a large number of parameters in deep

learning algorithms, and a limited number of flows that

are used in the training phase, there is a reasonable

chance of overfitting if the datasets are not used with

enough care. As an example, IP addresses can be a

misleading factor. This misleading effect exists in most

available public datasets like CIC-IDS2017 [40] and

KDD99 [2]. In [37], authors have shown that many pa-

rameters of the DARPA 99 [36] traffic, like TTL (Time

To Live), ToS (Type of Service), and the IP addresses,

can cause overfitting. For example, TTLs of the attack

traffics are mostly 126 and 253, but benign traffic has

nine restricted values, which are different from the at-



6 Mahdi Soltani1 et al.

3rd byte
packet s 

time
interval

1st byte 2nd byte

2nd

packet

1st

packet

3rd

packet

...

kth

packet

...

nth byte

Fig. 2 The output of the pre-processing phase in the form of
a normalized matrix fed into the deep learning module. Each
cell, Cij , represents the content of the jth byte of the ith

packet. The first column is different from other columns and
represents the time interval between ith packet and (i− 1)th

packet.

tack ones. Besides, source IP addresses of attacks are

different from benign traffics and can simply be used for

discrimination. The KDD99 dataset also has inherited

these vulnerabilities. Since the attack traffic constitutes

a small part of the dataset, there are so many IP ad-

dresses that are purely normal, and the algorithm can

assign a substantial weight for IP addresses to attain

higher accuracy. However, we know that this is not a

valid assumption in the real-world.

Considering the above issues, in our pre-processing

phase, we eliminate some bytes of packets that

belong to fields like CHECKSUM and IP ad-

dresses. Specifically, the total data-link header, the

Source/Destination IP addresses and the checksum

from the network header, and the checksum of the

transport layer are the removed items in the pre-

processing phase. It should be noted that this elimina-

tion can cause some performance reduction in the detec-

tion phase. For example, ignoring the client’s IP address

in a monolithic environment, like a university, can avoid

overfitting, but in heterogeneous networks with differ-

ent types of clients, some valuable information can be

missed. Besides, server IP addresses can be beneficial

in server-side IDSes. So, in the real world, this elimi-

nation should be applied according to the conditions of

the deployment environment.

3.1.2 Enriched Normalized Matrix

The pre-processing phase can be completed by en-

riching the normalized matrices. The basic pre-

processing matrices are adequate for detecting flow-

based attacks. However, other kinds of attacks can

be recognized by considering some intra-flows features.

These features are also added to the first row of the ba-

sic pre-processing matrix to make it richer. For exam-

ple, flooding attacks can be generated by making many

legitimate connections rapidly, and these kinds of at-

tacks can be detected by adding time intervals between

flows. Since in the real world, the normal and attack

flows are interleaved, the computation of the time in-

terval between flows should be based on the original

flows’ arrival times. The other approach is based on

splitting the flows into benign traffic and attack, and

then extracting the time interval in each subgroup. This

approach can increase the detection error ratio when

there exists normal traffic between attacks.

To address the intra-flow attacks, we use four more

extensive intra-flows features as follows: aggregative

source or destination address repetition in a fixed-size

bucket of packets or in a time window. Attacks like

DDoS use multiple different IP addresses to send re-

quests to the victim server, called Type I attacks. De-

tection of this kind of attack can be done by aggregat-

ing flows that have the same destination IP address. On

the other hand, in some attacks like port scanning, a

single client IP address tries to recognize different ac-

tive services (ports) on a specific victim IP address or a

specific service (port), which is activated on a network

range. The mentioned scenarios have the same source

address and destination port or same source and desti-

nation address, respectively. For simplification, we call

these kinds of attacks as Type II.

Another important aspect of detecting intra-flow

attacks is network bandwidth. For networks with low

bandwidth, a fixed size window (or bucket) is used for

aggregation. As the time interval between flows can ex-

ceed the time threshold, time windows cannot detect

the attacks. On the other hand, the fixed-size window

cannot detect attacks in high-speed traffics because the

window will be filled rapidly, and the new information

will overwrite the older ones. A time window can han-

dle this situation as well. In real networks, bandwidth

has no fixed value, and according to the conditions like

days vs. nights, it can have low or high bandwidth. So

we use a combination of these two kinds of windows for

the detection of intra-flow attacks.

The four aforementioned intra-flow features are ex-

tracted per each flow. Detection of Type I attacks de-

pends on the aggregation of flows based on their desti-

nation IP addresses. Hence, as a new flow arrives, it is

compared with flows that are observed in the fixed-size

and fixed-time windows. The number of flows having

the same IP address as the new one in both windows

is used as features. Similarly, aggregation based on the

source IP address is done for the detection of Type II

attacks. In this case, the source address of each flow

is compared with the source addresses of flows in the

fixed-size and fixed-time windows.

Finally, the five new intra-flow features will be

added to the first row of the basic normalized matrix
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(see Figure 3). This enriched matrix will be used as an

input of the deep learning module of DID. In the fol-

lowing, some candidates for DID deep learning module

are discussed, and the LSTM model is implemented.

…

Packet’s 
Time 

Interval
1st byte 2nd byte 3rd byte

… 00

… …

Added Row
Flow’s 
time 

interval

Flow’s 
information

Aggregate 
src in time 

window

Aggregate 
dst in time 

window

Aggregate 
src in fixed 

sized 
window

Aggregate 
dst in fixed 

sized 
window

kth packet

3rd packet

2nd packet

1st packet

bytenth4th byte

Fig. 3 The structure of enriched normalized matrices used
as the input to the deep learning module of DID. The main
difference with Figure 2 is the first row of the matrix, added
as the features that represent the intra-flow context.

3.2 Deep Learning Module of Deep Intrusion Detection

As mentioned earlier, in DID, we prepare a rich nor-

malized matrix as the input for a deep learning al-

gorithm. This matrix has the potential for extracting

content-based and some intra-flow attacks. In the fol-

lowing, some candidates for deep learning modules are

discussed. The main important point, which is common

among the proposed methods, is the sequential nature

of these algorithms. In fact, since packets, flows, and

network traffics are all, in general, sequential data, the

chosen algorithms should match or benefit from this

feature.

3.2.1 Recurrent Neural Networks

Recurrent Neural Network (RNN) is suitable for learn-

ing patterns in data sequences and time series, such as

processing natural languages and genetic data [16]. This

feature makes RNN an extremely useful tool for ana-

lyzing computer network traffic. The difference between

recurrent neural networks and feed-forward neural net-

works is that besides the current input, some informa-

tion from previous inputs is also processed. In RNN,

decision making related to an input instant at the mo-

ment t depends on the decision made at the moment

t− 1.

The mathematical definition of the forward mem-

ory transfer process in recursive neural networks is as

follows

ht = φ(Wxt + Uht−1),

where ht is the state of the hidden layer of the recurring

neural network at the moment t. The value of ht is a

tx
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+X

σ 
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Fig. 4 The internal structure of an LSTM cell.

function of the input at the moment t (i.e., xt) which

is multiplied to hidden layer weights W, and the last

moment hidden layer feedback ht−1 which is multiplied

to its own weights U . The weight matrices apply the

relative importance of the input at the current moment

and the feedback input from the previous moment.

3.2.2 LSTM

LSTM is a special type of recurring neural network

which is capable of learning long-term dependencies.

These networks have proven to be very effective in

many different circumstances and are now widely used

in practice. An LSTM layer consists of some similar

units, called LSTM cell. Inside each cell, four neural

networks are linked to each other in a specific structure

(see Figure 4). This special structure enables an LSTM

network to learn simultaneously short and long-term

dependencies very well. For more details on the LSTM

the interested readers can refer to [20].

3.2.3 LSTM-Based Classifier

Since, in practice, it has been observed that LSTM

based classifiers and their variants perform very well

on sequential data, we construct a deep learning model

with two LSTM layers as a proof of concept for our pro-

posed deep intrusion detection (DID) framework. The

hyper-parameters that are dedicated to this model are

based on the evaluations which are discussed later.

Figure 5 presents the details of the proposed model.

As shown in Figure 5, after extraction of sequential

features with LSTM layers (with 100 and 50 units,

respectively), some fully connected layers (with 2500,

1250, 512, 256, 64, and 16 neurons) are employed to

extract the more complicated features. Finally, a soft-

max layer is applied for binary classification between

attack and benign traffics. The activation functions of

all layers (except the last one) are ReLU, and in order

to avoid overfitting, some dropout layers with a 20%
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drop rate are added among fully connected ones. Fi-

nally, the Adam algorithm is used for optimization in

the training phase, and the loss value is computed by

binary cross-entropy as the loss function.

LSTM LayersEnriched Normalized Matrix Fully Connected Layers Labeled Flow

50 units

100 units

100 * 200 
Flow Matrix

2500 
neurons

1250 
neurons

512 
neurons

256 
neurons

64  
neurons

16   
neurons

Benign

Attack

Flatten Layer

Fig. 5 The proposed LSTM-based classifier used in the our
DID framework.

4 EXPERIMENT

This section contains a real implementation of a DID

instance on the CIC-IDS2017 and CSE-CIC-IDS2018

datasets. In the following, first, the CIC-IDS2017

and CSE-CIC-IDS2018 datasets are briefly introduced.

Then, after explaining the pre-processing phase, the

experimental results are presented and compared with

previous works. The reported results in this paper are

based on the 10-fold cross-validation tests.

4.1 Dataset

In this work, we use the CIC-IDS2017 and CSE-

CIC-IDS2018 datasets to benchmark the proposed

DID method. According to [19], there are few labeled

datasets with PCAP format traffic files; among them,

ISCX/CIC IDS is one of the best and up-to-date ones.

CIC IDS is the only option with adequate labeled

attacks/benign traffics in PCAP format. Hence, we

made our evaluations based on this dataset solely. This

dataset is made of 50 GB network traffic captured in

five different days, which is the most recent IDS evalua-

tion dataset and contains different types of attacks. Es-

pecially, content-based attacks like Heartbleed are also

included in this dataset. Traffic capturing is done in a

simulated computer network with several servers and

clients. The developers of CIC-IDS2017 have analyzed

real traces of a client-server network and have tried to

create the same profile for the clients. The details of the

five days of network traffic are shown in Table 1.

Table 1 Details of the CIC-IDS2017 dataset.

Day Attack type Attack Size Benign Size

Monday - 0B 11GB

Tuesday Brute Force 51MB 11GB

Wednesday DoS / DDoS 2GB 11GB

Thursday Web Attack, Infiltration 42MB 8.4GB

Friday Botnet ARES, Port Scan 2GB 7.5 GB

The main advantages of this dataset compared to

the previous ones are:

– Implementing a complete network configuration, in-

cluding Modem, Firewall, Switches, Routers, and a

variety of operating systems.

– Simulation of user profiles.

– The dataset is labeled. This is a requirement for

classification purposes. Besides, it presents the full

captured traffic without anonymization techniques.

– Implementing all kinds of interactions in the net-

work.

– Using a wide range of protocols and network at-

tacks.

Although, as explained above, this dataset has many

advantages, it has its shortcomings too. One of the most

important deficiencies of this dataset is its limited va-

riety of protocols and attacks compared to real-world

traffics. For example, IP addresses of attack traffic are

very limited, and hence, the other IP addresses can

be recognized as pure benign traffic. More precisely,

attacks on Tuesday and Wednesday are just focused

on one and two destination addresses, respectively. Be-

sides, DoS attacks on Friday are all from a specific client

IP address. On the other hand, real network conditions

like packet loss and different TTLs are not presented in

this dataset. Moreover, so many kinds of applications

like social networking are not considered.

For reporting more reliable results we also evalu-

ated the DID over a newer version of the IDS evalua-

tion dataset which is called CSE-CIC-IDS2018 [4] and

is introduced by CIC (Canadian Institute for Cyberse-

curity) and CSE (Communications Security Establish-

ment) collaboratively. This dataset extends the variety

of packets, OSes, network topology, and servers. For

example, the attacking infrastructure includes 50 ma-

chines and the victim organization has 5 departments

includes 420 PCs and 30 servers. However, the attack

types and normal protocols remain the same as the

CIC-IDS2017 dataset. Due to its better implementation

topology, this dataset can provide a better challenge for

the DID framework.

Finally, as mentioned above, according to our sur-

vey, the CIC-IDS2017 and CSE-CIC-IDS2018 are the

best datasets available in the context of IDS. However,

we should be aware of their weaknesses and simplic-
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ity. Obviously, in the real world, we need to implement

more sophisticated ML models with a higher number of

layers and nodes in each layer. Moreover, as discussed in

Section 3.1, we should be aware of the lack of diversity

of these datasets in the pre-processing phase.

4.2 Pre-processing

In this phase, we prepare the dataset as the input of

a neural network. First, we need to extract and split

the network flows from the pcap files. To this end, we

read the large pcap files and make separate files per

each flow. Flow separation is based on the source port,

destination port, source IP address, destination IP ad-

dress, and flow start time. The end of flow is reached

when the TCP FIN packet is read, or the maximum

flow time (1,200,000 ms) is passed.

4.2.1 Constructing the Input Matrix

Network flows are not suitable to be input directly to

the neural network. To make the flows applicable, we

have to apply several changes to them. First, we read

the frames of each flow. The data link header is removed

for extracting the packet since it does not have any

information for network intrusion detection tasks. Then

we read the bytes of the packet and divide them by 255

to obtain a normalized value between 0 and 1.

The maximum size of each packet is 1514 bytes, and

smaller packets are padded by zero-value bytes. Besides,

since the header length of UDP is less than TCP, we

add zero to the end of the UDP header so it will have

the same size as TCP header. There are some fields

in network traffic, which can mislead the deep learning

model. For example, the checksum field can have ran-

dom values, and most probably, it is useless. Moreover,

as explained above, IP addresses can lead to the overfit-

ting problem. We mask the value of these fields by zero.

In the end, we will have an n× 1514 matrix, where n is

the number of packets.

The dimensions of the input matrix for this dataset

can be reduced by inspecting the dataset traffic. As

shown in Figure 6, packet size in normal and attack

traffic has two distinct ranges: packets with only the

first 200 bytes, and packets with the maximum size

of 1514 bytes. By performing several experiments on

the dataset, we found that the first 200 bytes of each

packet constitutes the discriminant bytes, and inspect-

ing extra bytes has no significant impact on the learning

accuracy. In addition, benign and attack flows in this

dataset contain mainly less than 100 packets (as shown

in Figure 7). So, inspecting only the first 100 packets

of each flow can yield almost a complete evaluation of

the nature of flows in the ISCX/CIC 2017 dataset.

Finally, we have chosen the first 200 bytes of the first

100 packets of each flow as an input matrix according

to the nature of flows in this dataset.

Fig. 6 The distribution of number of bytes per packet in the
benign and attack traffics.

Fig. 7 The distribution of the number of packets per flow in
benign and attack traffics.

4.2.2 Subsampling

As shown in Table 1, the size of the CIC-IDS2017

dataset is 50GB before the pre-processing phase, and

the pre-processing phase increases its size tremendously

to more than 500GB. Due to hardware limitations, we

cannot use all traffic flows to train the neural network.

Therefore, we need to reduce the size of the dataset.
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Table 2 Details of the CSE-CIC-IDS2018 dataset.

Day Attack type Pcap size

Friday-02-03-2018 Botnet 45GB

Friday-16-02-2018/ DoS 39GB

Friday-23-02-2018 Web Attacks 59GB

Thursday-01-03-2018 Infiltration 53GB

Thursday-15-02-2018 DoS 41GB

Thursday-22-02-2018 Web Attacks 50GB

Tuesday-20-02-2018 DDoS 46GB

Wednesday-14-02-2018 Brute Force 40GB

Wednesday-21-02-2018 DDoS 55GB

Wednesday-28-02-2018 Infiltration 53GB

Also, the dataset is imbalanced, and the number of be-

nign flows is much higher than the number of attack

flows. This imbalance in data does not allow to train

the neural network correctly. To fix these issues, we

choose all of the attack flows and randomly select the

same amount of benign flows, balancing the dataset and

reducing the input data size. Finally, we have a pre-

processed dataset with a size of around 40GB.

The size of the CSE-CIC-IDS2018 dataset is even

more challenging. Its original size is around 480GB and

captured in 10 different days which is represented in Ta-

ble 2. Table 3 represents the selected flow numbers of

each category in these two datasets. The categories and

their sub-category attacks are as follows: Botnet, Port

Scan, DoS/DDoS (DoS slowloris, DoS Slowhttptest,

DoS Hulk, DoS GoldenEye), Heartbleed/Infiltration,

Brute Force (FTP-Patator, SSH-Patator), Web Attack

(Brute Force, XSS, SQL Injection). The two datasets

have the same attack categories with some little dif-

ferences such as The 2017 version contains heartbleed

attacks. On the other side, the 2018 version has lots of

infiltration attacks. Besides, the port scan attacks are

absent in the CSE-CIC-IDS2018 and the number of its

web attacks is more limited.

Table 3 The balanced number of evaluated flows in the bi-
nary classification experiment.

Category Sub-Category CIC-IDS2017
CSE-CIC-
IDS2018

Benign - 15000 15000

Attack

Web Attacks 1500 200

Botnet 2000 3000

Port Scan 2000 -

DoS / DDoS 6000 6000

Brute Force 3500 3000

Heartbleed /
Infiltration

10 3000

As mentioned above, the subsampling technique is

one of the main approaches to pre-process an unbal-

anced dataset before input to ML models. As mentioned

above, in the binary classification scenario, we have

balanced the two classes (benign and attack). When

we consider a multi-class classification setup, the same

technique can be applied. In this case, the subsampling

equalizes all classes, including the benign and other at-

tack categories.

Finally, the two evaluated CIC datasets have the

same attack types and categories. The attack types of

each attack category and the selected number of flows

for each attack category of the datasets are described

in Table 4.

Table 4 The balanced number of evaluated flows in the
multi-class classification experiment.

Category Sub-Category CIC-IDS2017
CSE-CIC-
IDS2018

Benign - 5000 5000

Attack

Web Attacks 1500 200

Botnet 2000 3000

Port Scan 2000 -

DoS / DDoS 6000 6000

Brute Force 3500 3000

Heartbleed /
Infiltration

10 3000

4.3 Experimental Results

After converting each flow to an enriched input matrix,

we have split the dataset randomly into three subsets.

The first set, which contains 64% of the flows, is used to

train and tune the weights of the deep learning model.

The second and third sets are used during validation

and test phases and contain 16% and 20% of flows, re-

spectively. We performed 10-fold cross-validation and

grid search for the hyper-parameter tuning.

There exist several metrics for evaluating the per-

formance of the trained model. Among them, we have

chosen precision (PR), recall (RC), fall-out (FO), and

F1 score (F1). Based on a confusion matrix, equations

of these parameters are stated as follows (TP: true pos-

itive, FP: false positive, TN: true negative, and FN:

false negative)
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Table 5 The hardware specification of the experiment envi-
ronment.

OS
Debian version 9.3 with kernel 4.9.0-
amd64

CPU Intel(R) Xeon(R) X5680 3.33GHz
with 24 virtual cores

RAM 18 GB

GPU GeForce GTX 1080 Ti

GPU Frame Buffer 11 GB

PR = TP/(TP + FP), (1)

RC = TP/(TP + FN), (2)

FO = FP/(FP + TN), (3)

F1 =
2 × PR × RC

PR + RC
. (4)

Recall (RC) is a valuable metric in IDSs as it de-

termines the ratio of attacks that have been detected

to the actual attacks. Besides, the ratio of benign flows,

labeled as attacks, to the total actual benign flows is de-

termined by the fall-out (FO). Precision (PR) shows the

ratio of correctly generated alerts (existence of attacks)

to all alerts. This metric represents the trust of net-

work administrators to the generated security alarms.

Finally, F1 score tries to make a balance between the

importance of precision and recall. This is achieved by

calculating the harmonic mean of these valuable met-

rics.

To implement our deep learning model, we have

used the Keras library [14], with Tensorflow [5] as its

backend. The characteristic of our experiment environ-

ment is shown in Table 5.

4.3.1 Evaluation of the Traditional ML Models

First, we evaluate the performance of different tradi-

tional machine learning classifiers like Support Vec-

tor Machine (SVM), Random Forests (RF), and Naive

Bayes (NB) over both the CIC-IDS2017 and CSE-CIC-

IDS2018 datasets. We have only presented the best re-

sults obtained by the hyper-parameters chosen through

an empirical random search (see Table 6). The results

are based on pre-extracted features, which are pre-

sented in CSV files alongside the dataset.

In the next step, we evaluate the traditional ML

models based on detection with the enriched raw data

(i.e., here, we do not use the pre-extracted features

of datasets). The traditional ML models are evaluated

over the pre-processed vectorized flows (see Table 7).

Due to the dependence of the size of the SVM model

Table 6 The traditional ML models for the binary classifi-
cation evaluated on the pre-extracted features given in CSV
files of CIC-IDS2017 and CSE-CIC-IDS2018.

Dataset Model Precision Recall F1 score

CIC-IDS2017

SVM 0.79 0.76 0.75

RF 0.98 0.98 0.98

NB 0.66 0.61 0.58

CSE-CIC-IDS2018

SVM 0.77 0.69 0.66

RF 0.95 0.95 0.95

NB 0.72 0.61 0.56

to the size of the input data, and also according to the

huge size of the pre-processed dataset, the SVM model

cannot be fit in our server and it is impractical for the

real world IDSs. Among the traditional ML models, the

RF shows remarkable results than the others over the

raw data.

Table 7 The traditional ML models for the binary classifi-
cation evaluated on the enriched raw data of CIC-IDS2017
and CSE-CIC-IDS2018.

Dataset Model Precision Recall F1 score

CIC-IDS2017
RF 0.96 0.96 0.96

NB 0.91 0.91 0.90

CSE-CIC-IDS2018
RF 0.90 0.89 0.89

NB 0.75 0.75 0.75

The results of the multi-class RF model as the best

traditional ML model over the enriched raw data are
also presented in Table 8.

4.3.2 Determining the Hyper-Parameters for the

DID-based LSTM

As mentioned before, the sequential nature of flows,

packets, and bytes leads us to use LSTM models for

the DID framework. Hence, the next step is to de-

termine the appropriate hyper-parameters of the pro-

posed LSTM models. The main hyper-parameters of

an LSTM model are the number of layers and the num-

ber of units in each layer. The main results of the grid

search to tune hyper-parameters are reported in the

following. LSTM-1a has one LSTM layer with 50 units

and some fully-connected layers with 2500, 1250, 512,

256, 64, and 16 neurons. LSTM-2a has the same fully-

connected layers but two LSTM layers, whereas the

number of units of the first LSTM layer is 100, and

the second one is 50 units. LSTM-1b and LSTM-2b

are similar to LSTM-1a and LSTM-1b respectively. The
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Table 8 The RF multi-class classifier evaluated on the en-
riched raw data of CIC-IDS2017 and CSE-CIC-IDS2018.

Dataset Category Precision Recall F1 score

CIC-IDS2017

Benign 0.97 0.84 0.90

Botnet 0.99 0.94 0.96

Port Scan 0.99 0.99 0.99

DoS/DDoS 0.96 1.00 0.98

Heartbleed/
Infiltration

0.00 0.00 0.00

Brute Force 0.98 1.00 0.99

Web Attacks 0.85 0.91 0.88

Total 0.96 0.96 0.96

CSE-CIC-IDS2018

Benign 0.74 0.93 0.82

Heartbleed/
Infiltration

0.33 0.12 0.18

Botnet 0.99 1.00 0.99

DoS/DDoS 0.95 0.91 0.93

Web Attacks 1.00 0.79 0.88

Brute Force 1.00 0.93 0.97

Total 0.82 0.84 0.82

main difference between these two models comes from

their fully connected layers. They have simpler fully-

connected layers than “a” models (they only have two

64 and 16 neurons layers). In all models, all layers’ ac-

tivation functions (except the last one) are ReLU, and

dropout layers with a 20% drop rate are added among

fully-connected ones.

Table 9 The comparison of different LSTM models em-
ployed in the DID framework.

Model Precision Recall F1 score

LSTM-1a 0.989 0.995 0.991

LSTM-1b 0.983 0.990 0.987

LSTM-2a 0.992 0.998 0.994

LSTM-2b 0.987 0.993 0.990

Table 9 represents the results of different LSTM

models introduced above, evaluated on the CIC-

IDS2017 dataset. As the results show, LSTM-2a out-

performs other models; however, the performance and

simplicity of LSTM-1b can also be a good candidate for

practical implementations.

Figure 8 depicts the loss value in the training phase

with selected hyper-parameters for LSTM-2a. At the

end of the training phase, the mean of loss in training

and validation data is 0.03 and 0.01, respectively. The

lower value of loss in the validation phase is due to the

dropout layers applied during the training phase, which

improves the generalization of the deep model. Conse-

quently, by removing them in the validation phase, bet-

ter results are achieved. The results of the evaluation of

this model by the test data are also presented in Table

11 for comparison with previous works.

We also evaluated our model as a multi-class clas-

sifier. In this scenario, not only the type of traffic but

also its category type will be determined. The perfor-

mance of the multi-class classification over the attack

categories of the CIC-IDS2017 and CSE-CIC-IDS2018

datasets are presented in Table 10.

Table 10 The LSTM based DID multi-class classifier eval-
uated on the enriched raw data of CIC-IDS2017 and CSE-
CIC-IDS2018.

Dataset Category Precision Recall F1 score

CIC-IDS2017

Benign 0.99 0.94 0.97

Botnet 0.86 1.00 0.92

Port Scan 0.99 0.99 0.99

DoS/DDoS 1.00 1.00 1.00

Heartbleed/
Infiltration

0.00 0.00 0.00

Brute Force 1.00 1.00 1.00

Web Attacks 0.95 0.98 0.96

Total 0.99 0.99 0.99

CSE-CIC-IDS2018

Benign 0.96 0.77 0.85

Heartbleed/
Infiltration

0.53 0.90 0.67

Botnet 1.00 1.00 1.00

DoS/DDoS 0.99 1.00 1.00

Web Attacks 0.95 0.97 0.96

Brute Force 1.00 1.00 1.00

Total 0.93 0.90 0.90

Fig. 8 The loss of the proposed deep learning module
(LSTM-2a) of DID during the training phase.
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Table 11 The results achieved by the proposed DID frame-
work on the CIC-IDS2017 and CSE-CIC-IDS2018 alongside
its comparison to [47], McPAD, and Deepcoin which are eval-
uated on the CIC-IDS2017. Besides, the reported values of
[41], [28], [29], and [48] over ISCX IDS 2012 are presented.

Dataset Model Precision Fall-out Recall F1 score

CSE-CIC
IDS 2018

DID (with LSTM) 0.933 0.105 0.923 0.927

Random Forest 0.902 0.196 0.891 0.892

CIC-IDS
2017

DID (with LSTM) 0.992 0.002 0.998 0.994

Zavrak et al. [47] - 0.550 0.950 -

McPAD [38] 0.993 0.019 0.177 0.300

DeepCoin [18] 0.983 0.009 - -

ISCX IDS
2012

Soheily-Khah and et al. [41] 0.987 0.001 0.989 0.988

PCA-based TMAD [28] 0.999 0.012 0.970 0.984

Kahn and et al. [29] 0.972 0.007 0.975 0.973

DFR [48] 0.981 - 0.991 0.986

4.3.3 Comparison with Similar Researches

Our work is comparable with two categories of related

works. The first category belongs to studies evaluated

on ISCX/CIC IDS datasets and the second one con-

cerns those that focus on the contents of the traffic

payloads. Soheily-Khah et al. [41] use 50 features of the

ISCX 2012 dataset to evaluate their model, which is

achieved by combining K-means and random forest al-

gorithms. This research is somehow comparable to our

work since it uses some learning algorithms over the

ISCX dataset, and this method can be compared with

deep learning. Their model has achieved recall and fall-

out of around 98.9 and 0.1, respectively. Note that since

they have not announced the average evaluation met-

rics, we have used their reported tables and the mean of

their metrics for different protocols (since PR was not

reported, we calculate its value). The first category also

comprises some other works such as [29], [48], and [18],

which all focus on using deep-learning methods over fea-

tures that are extracted from ISCX/CIC IDS datasets.

The main point that makes related works on ISCX IDS

2012 comparable with studies on CIC-IDS2017 is that

the CIC 2017 just an updated version of ISCX 2012. It

includes more benign profiles and attack version [40].

Due to the more complexity and completeness of the

CIC-IDS2017, the produced results are more reliable.

In the second category, we have works like [38],

which is one of the best research studies about detecting

content-based attacks. We have evaluated this method

by using its source code, which is available at [1]. Even

though this code yields good results over the dataset

used by themselves in [38], but it shows a weak per-

formance in learning CIC-IDS2017 dataset. This weak-

ness is related to the ISCX/CIC IDS dataset’s com-

prehensiveness against previous ones like DARPA or

KDD99. The results of the evaluation of McPAD by

CIC-IDS2017 are also represented in Table 11.

The main weakness of McPAD is its detection rate,

represented by the recall, which is around 20%. Al-

though McPAD has a significant detection rate over

the dataset used in [38], it cannot be beneficial in real-

world traffic. Further inspections show that while their

benign traffic is suitable, the attack ones used for the

evaluation have some notable weaknesses. For example,

allShellcode.pcap file has only 11 TCP sessions, which

in each one contains a shell-code attack. As the NOP

sled in these attacks has many repetitions of bytes like

0x90 and 0x61, they can be easily detected. Besides, the

other attack file, which is called allGeneric.pcap, has 66

HTTP attacks. Among them, 11 shell-code attacks can

be detected as the previous one, and the others have

hostnames that do not exist in the training dataset (like

www and www.i-pi.com). Consequently, the n-gram

mechanism can detect these kinds of attacks. However,

in the case of the CIC-IDS2017 dataset, although its

alarm has significant reliability (PR = 99.3%), its de-

tection rate is low (RC = 17.7%).

Another related work in the second category is [28],

which focuses on extracting features of HTTP packet

payloads by the PCA algorithm. Finally, using a Text

Mining-based Anomaly Detection (TMAD) model tries

to detect attack traffics.

Zavrak et al. [47] use variational autoencoders as

anomaly-based IDS sensors. Their evaluation has been

done over the CIC-IDS2017 dataset. The anomaly

model is trained by the records from Monday’s CSV

file that only contains benign traffic. Other days of the

dataset are used for the test phase. Finally, the FPR

and TPR metrics are reported that are equivalent to

the FO and RC, respectively.

Finally, we would like to report the resource and

time consumption of the proposed model and the com-

parison with the RF model as the best traditional ML

model over the enriched raw network data. The RF

model requires much lower resources in comparison

with the LSTM model according to our evaluations.

On average, the RF model needs about 208MB mem-

ory and 100% usage of one CPU core of the machine.

In contrast, the LSTM model uses about 900MB mem-

ory and 20% of the GPU processing power for the same

training data records. As presented in Table 12, the RF

model is much faster in the training phase than the

LSTM model. But the two models are competitive in

the test phase. Since an IDS is mainly used in the test

mode in the real world, the training time can have less

weight on the final comparison of these two models. On

the other side, as shown in Tables 8 and 10, the strength

of the LSTM model can be highlighted in more com-

plicated dataset like CSE-CIC-IDS2018. Definitely, in

the real world, there are complicated data that makes
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Table 12 The average processing time per flow in the train-
ing and test phases.

Model Type Training (sec) Test (sec)

DID
Binary 0.014 0.007

Multi-Class 0.016 0.008

RF
Binary 0.004 0.004

Multi-Class 0.005 0.005

the LSTM model more applicable. However, for a more

relaxed scenario where the RF model has an acceptable

performance and requires lower hardware resources, the

RF might be a better choice for the IDS implementa-

tion.

The input data to DID are flows and time consump-

tion of evaluation of each flow is around 7 milliseconds.

According to [27], on average, we can assume each flow

contains 78 packets, and each packet contains 870 bytes.

As a result, the proposed model in our test environment

can handle around 75 Megabit per second traffic data

per GPU. This can be a challenge in high-performance

applications. However, by applying various optimiza-

tions, the above performance can be significantly in-

creased and this can be an interesting direction for fu-

ture works.

4.4 Discussion

According to our experiments, the proposed deep intru-

sion detection (DID) approach can have a comparative

advantage over previous works in inspecting more va-

rieties of attacks, especially those who manipulate the

payload of traffic. However, the proposed approach has

some challenges which should be addressed in future

works. Some of these challenges are discussed below.

The main current shortcoming of using deep learn-

ing in network detection is its throughput. By increas-

ing the Internet bandwidth, we have to count on de-

vices with high throughput along with a high detec-

tion rate and low false alarm. Consequently, according

to the complexity of deep learning algorithms, one of

the main forward steps toward this goal is to optimize

the deep intrusion detectors and implement them over

high-performance devices like FPGAs or ASICs.

One of the most challenging issues in the scope of

intrusion detection systems is analyzing the encrypted

traffics. Since the content of encrypted flows is random-

ized, most of the signature-based IDSes have significant

issues with these kinds of traffics. Evaluation of DID

framework over encrypted traffics can be studied in fu-

ture works.

Another challenge to making ML-based IDSes more

applicable in practice is to adapt them to imbalanced

data. The imbalance of data can make a machine learn-

ing model tend to the “more observed” (major) cate-

gory. However, detecting the minor category may be

of high value for us (such as detecting cancer in med-

ical applications or attack detection in computer net-

works). Alongside, if the test dataset is also imbalanced,

the overall detection rate of the algorithm cannot pro-

vide a useful measure of the performance of the intru-

sion detection method in real scenarios. For example,

for a dataset with 95% benign traffic, this can lead to

a model that labels all the inputs as benign traffic to

achieve 95% accuracy while the desired goal of the in-

trusion detection system is to detect attacks as much as

possible with low false positive. In this paper, the data

reduction mechanism for the majority group has been

applied. However, this solution can cause some losses in

the diversity of the major category (i.e., in this paper,

the benign traffic). Consequently, some kinds of benign

flows may be detected as attacks in a more comprehen-

sive dataset, which has more complicated attacks.

Finally, in this research, we have used a labeled

dataset for training the model. However, the lack of

adequate diversity in this dataset can lead to poor per-

formance in real networks. On the other hand, each

network has its own behavior for normal traffics (like

the number of new connections per second), which may

be considered an abnormal behavior in other networks.

Hence, it is very crucial that we learn the models ac-

cording to their deployment environment.

5 Conclusion

This paper presented a Deep Intrusion Detection ap-

proach that uses deep learning algorithms for detect-

ing a wide range of attacks, including content-based

ones like SQL injection and Heartbleed attack. We have

used an LSTM-based model as an implementation of

the deep learning module of the DID approach. LSTM

layers can extract meaningful relations among bytes

of packets of each flow. Besides using dropout layers,

we tried to avoid overfitting. Four metrics that pro-

vide valuable information in intrusion detection appli-

cations have been selected for evaluation, namely, preci-

sion, recall, fall-out, and F1 score. On the CIC-IDS2017

dataset, we have achieved a precision of 0.992, fall-out

of 0.2, recall of 0.998, and F1 score of 0.994. Further-

more, on the CSE-CIC-IDS2018, the recall of 0.923 and

precision of 0.933 achieved. The experimental results

show that the proposed approach has better perfor-

mance than the previous works.
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