Skip to main content
Log in

On the Existence of Optimal Unions of Subspaces for Data Modeling and Clustering

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Given a set of vectors F={f 1,…,f m } in a Hilbert space \(\mathcal {H}\), and given a family \(\mathcal {C}\) of closed subspaces of \(\mathcal {H}\), the subspace clustering problem consists in finding a union of subspaces in \(\mathcal {C}\) that best approximates (is nearest to) the data F. This problem has applications to and connections with many areas of mathematics, computer science and engineering, such as Generalized Principal Component Analysis (GPCA), learning theory, compressed sensing, and sampling with finite rate of innovation. In this paper, we characterize families of subspaces \(\mathcal {C}\) for which such a best approximation exists. In finite dimensions the characterization is in terms of the convex hull of an augmented set \(\mathcal {C}^{+}\). In infinite dimensions, however, the characterization is in terms of a new but related notion; that of contact half-spaces. As an application, the existence of best approximations from π(G)-invariant families \(\mathcal {C}\) of unitary representations of Abelian groups is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aldroubi, C. Cabrelli, D. Hardin, U. Molter, Optimal shift-invariant spaces and their Parseval frame generators. Appl. Comput. Harmon. Anal. 273–283 (2007).

  2. A. Aldroubi, C. Cabrelli, U. Molter, Optimal nonlinear models for sparsity and sampling. J. Fourier Anal. Appl. 14, 793–812 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Aldroubi, K. Gröchenig, Non-uniform sampling in shift-invariant spaces. SIAM Rev. 43, 585–620 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Aldroubi, A. Sekmen, Reduction and null space algorithms for the subspace clustering problem (2010, submitted). arXiv:1010.2198.

  5. M. Bownik, The structure of shift-invariant subspaces of L 2(ℝn). J. Funct. Anal. 177, 282–309 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Bradley, O. Mangasarian, k-plane clustering. J. Glob. Optim. 16, 23–32 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Chen, G. Lerman, Foundations of a multi-way spectral clustering framework for hybrid linear modeling. Found. Comput. Math. 9, 517–558 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006).

    Article  Google Scholar 

  9. J. Costeira, T. Kanade, A multibody factorization method for independently moving objects. Int. J. Comput. Vis. 29, 159–179 (1998).

    Article  Google Scholar 

  10. J. Dixmier, Les C*-algèbres et leurs représentations (Gauthier-Villars, Paris, 1969).

    Google Scholar 

  11. P.L. Dragotti, M. Vetterli, T. Blu, Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix. IEEE Trans. Signal Process. 55, 1741–1757 (2007).

    Article  MathSciNet  Google Scholar 

  12. C. Eckart, G. Young, The approximation of one matrix by another of lower rank. Psychometrica 1, 211–218 (1936).

    Article  Google Scholar 

  13. R. Gribonval, M. Nielsen, Sparse decompositions in unions of bases. IEEE Trans. Inf. Theory 49, 3320–3325 (2003).

    Article  MathSciNet  Google Scholar 

  14. D. Han, D.R. Larson, Wandering vector multipliers for unitary groups. Trans. Am. Math. Soc. 353, 3347–3370 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Han, D.R. Larson, Frames, Bases and, Group Representations. Mem. Am. Math. Soc., vol. 147 (697) (2000).

    Google Scholar 

  16. D. Han, Frame representations and Parseval duals with applications to Gabor frames. Trans. Am. Math. Soc. 360, 3307–3326 (2008).

    Article  MATH  Google Scholar 

  17. E. Hernandez, D. Labate, G. Weiss, A unified characterization of reproducing systems generated by a finite family, II. J. Geom. Anal. 12, 615–662 (2002).

    MathSciNet  MATH  Google Scholar 

  18. J. Ho, M. Yang, J. Lim, K. Lee, D. Kriegman, Clustering appearances of objects under varying illumination conditions. In Proceedings of International Conference on Computer Vision and Pattern Recognition, vol. 1 (2003), pp. 11–18.

    Google Scholar 

  19. T. Kanade, D.D. Morris, Factorization methods for structure from motion. Philos. Trans. R. Soc. Lond. A 356, 1153–1173 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Kanatani, Y. Sugaya, Multi-stage optimization for multi-body motion segmentation. IEICE Trans. Inf. Syst. 335–349 (2003).

  21. G. Kutyniok, D. Labate, The theory of reproducing systems on locally compact Abelian groups. Colloq. Math. 106, 197–220 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Lerman, T. Zhang, Probabilistic recovery of multiple subspaces in point clouds by geometric p minimization. Preprint (2010).

  23. Y. Lu, M.N. Do, A theory for sampling signals from a union of subspaces. IEEE Trans. Signal Process. 56, 2334–2345 (2008).

    Article  MathSciNet  Google Scholar 

  24. Y. Ma, A.Y. Yang, H. Derksen, R. Fossum, Estimation of subspace arrangements with applications in modeling and segmenting mixed data. SIAM Rev. 50, 413–458 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  25. I. Maravic, M. Vetterli, Sampling and reconstruction of signals with finite rate of innovation in the presence of noise. IEEE Trans. Signal Process. 53, 2788–2805 (2005).

    Article  MathSciNet  Google Scholar 

  26. M. Mishali, Y.C. Eldar, Blind multi-band signal reconstruction: compressed sensing for analog signals. IEEE Trans. Signal Process. 57, 993–1009 (2009).

    Article  Google Scholar 

  27. H. Rauhut, K. Schnass, P. Vandergheynst, Compressed sensing and redundant dictionaries. IEEE Trans. Inf. Theory 54, 2210–2219 (2008).

    Article  MathSciNet  Google Scholar 

  28. R. Vidal, Y. Ma, S. Sastry, Generalized principal component analysis (GPCA). IEEE Trans. Pattern Anal. Mach. Intell. 27, 1–15 (2005).

    Article  Google Scholar 

  29. J. Yan, M. Pollefeys, A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and nondegenerate. In ECCV, vol. 4 (2006), pp. 94–106.

    Google Scholar 

  30. T. Zhang, A. Szlam, Y. Wang, G. Lerman, Randomized Hybrid Linear Modeling by Local Best-Fit Flats. CVPR, San Francisco (2010).

    Google Scholar 

  31. S. Smale, D.X. Zhou, Shannon sampling II. Connections to learning theory. Appl. Comput. Harmon. Anal. 19, 285–302 (2005).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akram Aldroubi.

Additional information

Communicated by Wolfgang Dahmen.

The research of A. Aldroubi is supported in part by NSF Grant DMS-0807464.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aldroubi, A., Tessera, R. On the Existence of Optimal Unions of Subspaces for Data Modeling and Clustering. Found Comput Math 11, 363–379 (2011). https://doi.org/10.1007/s10208-011-9086-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-011-9086-4

Keywords

Mathematics Subject Classification (2000)

Navigation