Skip to main content
Log in

Error Analysis of the Strang Time-Splitting Laguerre–Hermite/Hermite Collocation Methods for the Gross–Pitaevskii Equation

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is to carry out a rigorous error analysis for the Strang splitting Laguerre–Hermite/Hermite collocation methods for the time-dependent Gross–Pitaevskii equation (GPE). We derive error estimates for full discretizations of the three-dimensional GPE with cylindrical symmetry by the Strang splitting Laguerre–Hermite collocation method, and for the d-dimensional GPE by the Strang splitting Hermite collocation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Bao, J. Shen, A fourth-order time-splitting Laguerre–Hermite pseudo-spectral method for Bose–Einstein condensates, SIAM J. Sci. Comput. 26, 2010–2028 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Bao, D. Jaksch, P.A. Markowich, Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation, J. Comput. Phys. 187, 318–342 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Ben Abdallah, F. Castella, F. Méhats, Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity, J. Differ. Equ. 245, 154–200 (2008).

    Article  MATH  Google Scholar 

  4. J. Bergh, J. Löfström, Interpolation Spaces, An Introduction (Springer, Berlin, 1976).

    Book  MATH  Google Scholar 

  5. M.M. Cerimele, M.L. Chiofalo, F. Pistella, S. Succi, M.P. Tosi, Numerical solution of the Gross–Pitaevskii equation using an explicit finite-difference scheme: an application to trapped Bose–Einstein condensates, Phys. Rev. E 62, 1382–1389 (2000).

    Article  Google Scholar 

  6. E. Faou, Geometric Numerical Integration and Schrödinger Equations (European Math. Soc., Zürich, 2012).

    Book  MATH  Google Scholar 

  7. A. Friedman, Partial Differential Equations (Holt, Rinehart and Winston, Inc., New York, 1969).

    MATH  Google Scholar 

  8. L. Gauckler, Convergence of a split-step Hermite method for the Gross–Pitaevskii equation, IMA J. Numer. Anal. 31, 396–415 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento 20, 454–477 (1961).

    Article  MATH  Google Scholar 

  10. B. Guo, J. Shen, C. Xu, Spectral and pseudospectral approximations using Hermite functions: application to the Dirac equation, Adv. Comput. Math. 19, 35–55 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Guo, L. Wang, Z. Wang, Generalized Laguerre interpolation and pseudospectral method for unbounded domains, SIAM J. Numer. Anal. 43, 2567–2589 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Hairer, S.P. Nörsett, G. Wanner, Solving Ordinary Differential Equations. I. Nonstiff Problems, 2nd edn., Springer Series in Computational Mathematics, vol. 8 (Springer, Berlin, 1993).

    MATH  Google Scholar 

  13. E. Hansen, A. Ostermann, Exponential splitting for unbounded operators, Math. Comput. 78, 1485–1496 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Helffer, Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque, vol. 112 (SMF, Paris, 1984).

    MATH  Google Scholar 

  15. W. Hundsdorfer, J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer Series in Computational Mathematics, vol. 33 (Springer, Berlin, 2003).

    MATH  Google Scholar 

  16. T. Jahnke, C. Lubich, Error bounds for exponential operator splittings, BIT Numer. Math. 40, 735–744 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  17. O. Koch, C. Lubich, Variational-splitting time integration of the multi-configuration time-dependent Hartree–Fock equations in electron dynamics, IMA J. Numer. Anal. 31, 379–395 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Lubich, On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations, Math. Comput. 77, 2141–2153 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  19. L.P. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP 13, 451–454 (1961).

    MathSciNet  Google Scholar 

  20. P.A. Ruprecht, M.J. Holland, K. Burrett, M. Edwards, Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms, Phys. Rev. A 51, 4704–4711 (1995).

    Article  Google Scholar 

  21. R. Temam, Infinite Dimensional Dynamical System in Mechanics and Physics, Applied Mathematical Sciences, vol. 68 (Springer, New York, 1988).

    Book  Google Scholar 

  22. M. Thalhammer, High-order exponential operator splitting methods for time-dependent Schrödinger equations, SIAM J. Numer. Anal. 46, 2022–2038 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Wang, Analysis of spectral approximations using prolate spheroidal wave functions, Math. Comput. 79, 807–827 (2010).

    MATH  Google Scholar 

  24. X. Xiang, Z. Wang, Generalized Hermite spectral method and its applications to problems in unbounded domains, SIAM J. Numer. Anal. 48, 1231–1253 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  25. X. Xiang, Z. Wang, Generalized Hermite approximations and spectral method for partial differential equations in multiple dimensions, submitted.

Download references

Acknowledgements

The work of J. Shen was partially supported by NSF grant DMS-0915066 and AFOSR grant FA9550-11-1-0328.

The work of Z.-Q. Wang was partially supported by the NSF of China, No. 11171225, the Shuguang Project of the Shanghai Education Commission, No. 08SG45, the Innovation Program of the Shanghai Municipal Education Commission, No. 12ZZ131, and the Fund for E-institute of Shanghai Universities, No. E03004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shen.

Additional information

Communicated by Arieh Iserles.

Appendix: The Proof of Lemma 4.4

Appendix: The Proof of Lemma 4.4

Proof

The proof of Lemma 4.4 is analogous to the corresponding results for the Schrödinger–Poisson equation in [18]. For simplicity, we only verify (4.17). To this end, let \(\widehat{H}=\widehat{T}+\widehat{V}\), and denote by D H , D T , and D V the corresponding Lie derivatives (cf. [18]) of \(\widehat{H}\), \(\widehat{T}\), and \(\widehat{V}\), respectively. According to Sect. 4.4 of [18],

$$ \psi^1-\psi(\tau)=\tau f\biggl(\frac{1}{2} \tau\biggr)- \int^\tau_0f(s)\, \mathrm{d}s+r_2-r_1, $$
(A.1)

where f(s)=exp((τs)D T )D V exp(sD T )Id(ψ 0), Id is the identity operator, and

Next we write the principal error term in the second-order Peano form:

$$\tau f\biggl(\frac{1}{2} \tau\biggr)-\int^\tau_0f(s) \,\mathrm{d}s=\tau^3\int^1_0 \nu (\theta)f^{\prime\prime}(\theta\tau)\,\mathrm{d}\theta $$

with the Peano kernel ν of the midpoint rule. We have (cf. Sect. 5.2 of [18])

where [D T ,D V ]=D T D V D V D T . Hence by (4.14), the quadrature error is bounded in \(H^{k}_{A}(\varOmega)\) by \(c\tau^{3}\|\psi_{0}\|^{3}_{H^{k+4}_{A}(\varOmega)}\). Let us denote

$$g(s,\sigma)=\exp\bigl((\tau-s-\sigma)D_T\bigr)D_V \exp(\sigma D_T)D_V\exp(s D_T)\mathrm{Id}( \psi_0). $$

Then the remainder term can be expressed as

$$r_2-r_1=\frac{1}{2} \tau^2g\biggl(\frac{1}{2} \tau,0 \biggr)-\int^\tau_0\int ^{\tau -s}_0g(s,\sigma)\,\mathrm{d}\sigma \, \mathrm{d}s+\widetilde{r}_2-\widetilde{r}_1, $$

where

$$ \widetilde{r}_1=r_1-\int^\tau_0\int^{\tau -s}_0g(s,\sigma)\,\mathrm{d}\sigma \,\mathrm{d}s,\qquad\widetilde{r}_2=r_2-\frac{1}{2} \tau^2g\biggl(\frac{1}{2} \tau,0\biggr). $$

It is clear that (cf. [18])

By using a similar argument as in Sect. 5.2 of [18], we can obtain

$$\biggl\|\frac{1}{2} \tau^2g\biggl(\frac{1}{2} \tau,0\biggr)-\int^\tau_0\int^{\tau -s}_0g(s,\sigma)\,\mathrm{d}\sigma \,\mathrm{d}s \biggr\|_{H^{k}_A(\varOmega)}\leq c_1\tau^3, $$

where c 1 depends only on \(\|\psi_{0}\|_{H^{k+2}_{A}(\varOmega)}\).

Next, we estimate the term \(\|\widetilde{r}_{2}\|_{H^{k}_{A}(\varOmega)}\). By the Taylor expansion,

$$\exp(\theta\tau D_V)=I+\int^{\theta\tau}_0 \exp(\xi D_V)D_V \,\mathrm{d}\xi=I+\theta\tau \int^1_0\exp(\theta\tau\varsigma D_V)D_V\,\mathrm{d}\varsigma, $$

whence

$$\widetilde{r}_2=\tau^3\int ^1_0\int^1_0 \theta(1-\theta)\exp \biggl(\frac{1}{2} \tau D_T\biggr)\exp(\theta\tau \varsigma D_V)D_V^3\exp\biggl(\frac{1}{2} \tau D_T\biggr)\mathrm{Id}(\psi_0)\,\mathrm{d}\varsigma \, \mathrm{d}\theta. $$

Setting \(\phi=\mathrm{e}^{-\mathrm{i}\frac{\tau}{2}(\mathcal{A}_{r}+\mathcal{B}_{z})}\psi_{0}\) and \(\eta=\mathrm{e}^{-\mathrm{i}\theta\tau\varsigma\beta|\phi|^{2}}\phi\), a direct calculation shows that

$$\exp\biggl(\frac{1}{2} \tau D_T\biggr)\exp(\theta\tau\varsigma D_V)D_V^3\exp\biggl(\frac{1}{2} \tau D_T\biggr)\mathrm{Id}(\psi_0)=\mathrm{i} \beta^3\mathrm{e}^{-\mathrm{i}\frac{\tau}{2}(\mathcal{A}_r+\mathcal {B}_z)}\bigl(|\eta|^6\eta \bigr). $$

Hence, by (4.2)–(4.4) and (4.10), we find that for j=max(k,2),

where c 2 depends only on \(\|\psi_{0}\|_{H^{j}_{A}(\varOmega)}\). Therefore, \(\|\widetilde{r}_{2}\|_{H^{k}_{A}(\varOmega)}\leq c_{2}\tau^{3}\).

It remains to estimate the term \(\|\widetilde{r}_{1}\|_{H^{k}_{A}(\varOmega)}\). By using the nonlinear variation-of-constants formula (cf. [18]), we obtain that

By (4.2)–(4.4), a direct calculation gives

Therefore, \(\|\widetilde{r}_{1}\|_{H^{k}_{A}(\varOmega)}\leq c_{3}\tau^{3}\), where c 3 depends only on \(\max_{0\leq t\leq \tau}\|\psi\|_{H^{j}_{A}(\varOmega)}\). A combination of the previous statements leads to (4.17). □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, J., Wang, ZQ. Error Analysis of the Strang Time-Splitting Laguerre–Hermite/Hermite Collocation Methods for the Gross–Pitaevskii Equation. Found Comput Math 13, 99–137 (2013). https://doi.org/10.1007/s10208-012-9124-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-012-9124-x

Keywords

Mathematics Subject Classification

Navigation