Skip to main content
Log in

A Polynomial Rate of Asymptotic Regularity for Compositions of Projections in Hilbert Space

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper provides an explicit polynomial rate of asymptotic regularity for (in general inconsistent) feasibility problems in Hilbert space. In particular, we give a quantitative version of Bauschke’s solution of the zero displacement problem as well as of various generalizations of this problem. The results in this paper have been obtained by applying a general proof-theoretic method for the extraction of effective bounds from proofs due to the author (‘proof mining’) to Bauschke’s proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Avigad and J. Iovino. Ultraproducts and metastability. New York J. Math. 19: 713–727, 2013.

    MathSciNet  MATH  Google Scholar 

  2. J. Baillon, and R.E. Bruck. The rate of asymptotic regularity is \(O(1/n)\) [\(O/\sqrt{n}\)], in: Theory and applications of nonlinear operators of accretive and monotone type, pp. 51–81, Dekker, 1996.

  3. H.H. Bauschke. The composition of projections onto closed convex sets in Hilbert space is asymptotically regular. Proc. Amer. Math. Soc. 131: 141–146, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  4. H.H. Bauschke, J.M. Borwein, and A.S. Lewis. The method of cyclic projections for closed convex sets in Hilbert space. In: Recent developments in optimization theory and nonlinear analysis (Jerusalem 1995), pp. 1–38, Amer. Math. Soc., Providence, RI, 1997.

  5. H.H. Bauschke, V. Martín-Márquez, S.M. Moffat, and X. Wang (2012) Compositions and convex combinations of asymptotically regular firmly nonexpansive mappings are also asymptotically regular. Fixed Point Theory and Applications 2012: 52, 11 pp., https://doi.org/10.1186/1687-1812-2012-53.

  6. H. Brezis and A. Haraux. Image d’une somme d’operateurs monotones et applications. Israel Journal of Mathematics 23: 165–186, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  7. F.E. Browder. Convergence theorems for sequences of nonlinear operators in Banach spaces. Math. Zeitschrift 100: 201–225, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  8. F.E. Browder and W.V. Petryshyn. The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Amer. Math. Soc. 72: 571–575, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  9. R.E. Bruck. A simple proof that the rate of asymptotic regularity of \((I+T)/2\) is \(O(1/\sqrt{n}\)), in: Recent advances on metric fixed point theory (Seville, 1995), pp. 11–18, 1996.

  10. R.E. Bruck and S. Reich. Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3: 459–470, 1977.

    MathSciNet  MATH  Google Scholar 

  11. S. Cho. A variant of continuous logic and applications to fixed point theory. Preprint 2016, arXiv:1610.05397.

  12. P. Gerhardy and U. Kohlenbach. General logical metatheorems for functional analysis. Trans. Amer. Math. Soc. 360: 2615–2660, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Goebel and S. Reich. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.

    MATH  Google Scholar 

  14. D. Günzel. Logical metatheorems in the context of families of abstract metric structures. Master-Thesis, TU Darmstadt. 2013.

    Google Scholar 

  15. M.A.A. Khan and U. Kohlenbach. Quantitative image recovery theorems. Nonlinear Anal. 106: 138–150, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  16. U. Kohlenbach. Some logical metatheorems with applications in functional analysis. Trans. Amer. Math. Soc. 357: 89–128, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  17. U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathematics. Springer Monographs in Mathematics. xx+536pp., Springer Heidelberg-Berlin, 2008.

  18. U. Kohlenbach. On the quantitative asymptotic behavior of strongly nonexpansive mappings in Banach and geodesic spaces. Israel Journal of Mathematics 216: 215–246, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Reich. Asymptotic behavior of contractions in Banach spaces. J. Math. Anal. Appl. 44: 57–70, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Reich. The range of sums of accretive and monotone operators. J. Math. Anal. Appl. 68: 310–317, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Reich. A limit theorem for projections, Linear and Multilinear Algebra 13: 281–290, 1983.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Kohlenbach.

Additional information

Communicated by James Renega.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohlenbach, U. A Polynomial Rate of Asymptotic Regularity for Compositions of Projections in Hilbert Space. Found Comput Math 19, 83–99 (2019). https://doi.org/10.1007/s10208-018-9377-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-018-9377-0

Keywords

Mathematics Subject Classification

Navigation