Skip to main content
Log in

Minimum density power divergence estimator for covariance matrix based on skew \(t\) distribution

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the problem of estimating the covariance matrix of stationary multivariate time series based on the minimum density power divergence method that uses a multivariate skew \(t\) distribution family. It is shown that under regularity conditions, the proposed estimator is strongly consistent and asymptotically normal. A simulation study is provided for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alqallaf FA, Konis KP, Martin RD, Zamar RH (2002) Scalable robust covariance and correlation estimates for data mining. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining. Association for Computing Machinery, New York pp 14–23

  • Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J Roy Stat Soc Ser B 65:367–389

    Article  MATH  MathSciNet  Google Scholar 

  • Azzalini A, Genton MG (2008) Robust likelihood methods based on the skew \(t\) and related distributions. Int Stat Rev 76:106–129

    Article  MATH  Google Scholar 

  • Basu A, Harris IR, Hjort NL, Jones MC (1998) Robust and efficient estimation by minimizing a density power divergence. Biometrika 85:549–559

    Article  MATH  MathSciNet  Google Scholar 

  • Branco MD, Dey DK (2001) A general class of multivariate skew elliptical distributions. J Multivar Anal 79:99–113

    Article  MATH  MathSciNet  Google Scholar 

  • Campbell NA (1980) Robust procedures in multivariate analysis I: Robust covariance estimation. Appl Stat 29:231–237

    Article  MATH  Google Scholar 

  • Fujisawa H, Eguchi S (2006) Robust estimation in the normal mixture model. J Stat Plann Inference 136:3989–4011

    Article  MATH  MathSciNet  Google Scholar 

  • Gupta AK (2003) Multivariate skew t-distribution. Statistics 37:359–363

    Article  MATH  MathSciNet  Google Scholar 

  • Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA (1986) Robust statistics: the approach based on influence functions. Wiley, New York

    MATH  Google Scholar 

  • Kim B, Lee S (2011) Robust estimation for the covariance matrix of multivariate time series. J Time Ser Anal 32:469–481

    Article  MATH  Google Scholar 

  • Kim B, Lee S (2013) Robust estimation for the covariance matrix of multivariate time series based on normal mixtures. Comput Stat Data Anal 57:125–140

    Article  Google Scholar 

  • Lee S, Genton MG, Arellano-Valle RB (2010) Perturbation of numerical confidential data via skew \(t\) distributions. Manag Sci 56:318–333

    Article  MATH  Google Scholar 

  • Maronna RA (1976) Robust M-estimators of multivariate location and scatter. Ann Stat 4:51–67

    Article  MATH  MathSciNet  Google Scholar 

  • Maronna RA, Yohai VJ (1995) The behavior of the Stahel-Donoho robust multivariate estimator. J Am Stat Assoc 90:330–341

    Article  MATH  MathSciNet  Google Scholar 

  • Maronna RA, Zamar RH (2002) Robust multivariate estimates for high dimensional data sets. Technometrics 44:307–317

    Article  MathSciNet  Google Scholar 

  • Peña D, Prieto FJ (2001) Multivariate outlier detection and robust covariance matrix estimation. Technometrics 43:286–300

    Article  MathSciNet  Google Scholar 

  • Rousseeuw PJ (1985) Multivariate estimators with high breakdown point. In: Grossmann W, Pflug G, Vincze I, Wertz W (eds) Mathematical statistics and its applications, vol B. Reidel Publishing Company, Dordrecht, pp 283–297

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to thank the two referees for their helpful comments to improve the quality of this paper. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MEST) (No. 2012R1A2A2A01046092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangyeol Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 (PDF 55 kb)

Appendix

Appendix

We provide the proofs of Theorems 3.1 and 3.2 for the case of \(\lambda >0\). Since the proofs are similar to those presented in Kim and Lee (2011, 2013) except for Lemma 6.1, we only provide the proof for Lemma 6.1. The proofs of Lemmas 6.2–6.5 and Theorem 3.1 are detailed in the supplementary material.

The following two lemmas are needed to prove Theorem 3.1.

Lemma 6.1

For all \(\theta \in \Theta \) and \(\varvec{x}\in \mathbb {R}^d\), there exist constants \(l_{\lambda ,0},\ldots ,l_{\lambda ,3}\) such that \(|V_\lambda (\theta ;\varvec{x})|\le l_{\lambda ,0}\) and for \(1\le i_1,\ldots ,i_r\le \rho ~(r=1,2,3)\),

$$\begin{aligned} \left| \frac{\partial ^rV_\lambda (\theta ;\varvec{x})}{\partial \theta _{i_1}\cdots \partial \theta _{i_r}}\right| \le l_{\lambda ,r}. \end{aligned}$$

Proof

Note that

$$\begin{aligned} |V_\lambda (\theta ;\varvec{x})|&= \left| \int f_\theta ^{1+\lambda }(\varvec{z})d\varvec{z}-(1+\frac{1}{\lambda })f_\theta ^\lambda (\varvec{x})\right| \\&\le \int f_\theta ^{1+\lambda }(\varvec{z})d\varvec{z}+(1+\frac{1}{\lambda })f_\theta ^\lambda (\varvec{x})\\ {}&:= W_{\lambda ,0}(\theta )+Q_{\lambda ,0}(\theta ;\varvec{x}). \end{aligned}$$

Let \(w_{\lambda ,0}:=\sup _{\theta \in \Theta }W_{\lambda ,0}(\theta )\) and \(q_{\lambda ,0}(\varvec{x}):=\sup _{\theta \in \Theta }Q_{\lambda ,0}(\theta ;\varvec{x})\). Since \(\Theta \) is compact and \(W_{\lambda ,0}(\theta )\) and \(Q_{\lambda ,0}(\theta ;\varvec{x})\) are continuous in \(\theta \in \Theta , W_{\lambda ,0}(\theta )\le w_{\lambda ,0}<\infty ~\text{ and }~Q_{\lambda ,0}(\theta ;\varvec{x})\le q_{\lambda ,0}(\varvec{x})<\infty \) for all \(\varvec{x}\in \mathbb {R}^d\). Further, \(q_{\lambda ,0}(\varvec{x})=O\left( (\varvec{x}'\varvec{x})^{-\lambda (\nu +d)/2}\right) \), so that \(q_{\lambda ,0}(\varvec{x})<q'_{\lambda ,0}\) for some constant \(q'_{\lambda ,0}\). Let \(l_{\lambda ,0}:=w_{\lambda ,0}+q'_{\lambda ,0}\). Then, \(|V_{\lambda }(\theta ;\varvec{x})|\le l_{\lambda ,0}\).

Now, we consider the case of \(r=1\). Note that

$$\begin{aligned} \left| \frac{\partial V_\lambda (\theta ;\varvec{x})}{\partial \alpha _i}\right|&= \left| \int \frac{\partial f_\theta ^{1+\lambda }(\varvec{z})}{\partial \alpha _i}d\varvec{z}-\left( 1+\frac{1}{\lambda }\right) \frac{\partial f_\theta ^{\lambda }(\varvec{x})}{\partial \alpha _i}\right| \\ {}&\le (1+\lambda )\left\{ \left| \int f_\theta ^\lambda (\varvec{z})\frac{\partial f_\theta (\varvec{z})}{\partial \alpha _i}d\varvec{z}\right| +\left| f_\theta ^\lambda (\varvec{x})\left( \frac{\partial f_\theta (\varvec{x})}{\partial \alpha _i}\right) /f_\theta (\varvec{x}) \right| \right\} \\ {}&:= (1+\lambda )\left\{ W_{\lambda ,1,1}(\theta )+Q_{\lambda ,1,1}(\theta ;\varvec{x}) \right\} ~\text{ for }~1\le i \le d. \end{aligned}$$

In the same way, we have

$$\begin{aligned} \left| \frac{\partial V_\lambda (\theta ;\varvec{x})}{\partial \omega _{ij}}\right|&\le (1+\lambda )\left\{ W_{\lambda ,1,2}(\theta )+Q_{\lambda ,1,2}(\theta ;\varvec{x}) \right\} ~\text{ for }~2\le i \le d,~1\le j\le i-1,\\\left| \frac{\partial V_\lambda (\theta ;\varvec{x})}{\partial \omega _{ii}}\right|&\le (1+\lambda )\left\{ W_{\lambda ,1,3}(\theta )+Q_{\lambda ,1,3}(\theta ;\varvec{x}) \right\} ~\text{ for }~1\le i \le d,\\\left| \frac{\partial V_\lambda (\theta ;\varvec{x})}{\partial \nu }\right|&\le (1+\lambda )\left\{ W_{\lambda ,1,4}(\theta )+Q_{\lambda ,1,4}(\theta ;\varvec{x}) \right\} . \end{aligned}$$

Since the exact form of \(\partial f_\theta (\varvec{x})/\partial \theta _i\) is complicated, we do not provide the details here. However, it can be easily obtained. Let \(w_{\lambda ,1,k}=\sup _{\theta \in \Theta }W_{\lambda ,1,k}(\theta )~\text{ and }~q_{\lambda ,1,k}(\varvec{x})=\sup _{\theta \in \Theta }Q_{\lambda ,1,k}(\theta ;\varvec{x}),~k=1,2,3,4.\) Since \(\Theta \) is compact and \(W_{\lambda ,1,k}(\theta )\) and \(Q_{\lambda ,1,k}(\theta ;\varvec{x})\) are continuous in \(\theta \in \Theta , W_{\lambda ,1,k}(\theta )\le w_{\lambda ,1,k}<\infty ~\text{ and }~Q_{\lambda ,1,k}(\theta ;\varvec{x})\le q_{\lambda ,1,k}(\varvec{x})<\infty \) for all \(\varvec{x}\in \mathbb {R}^d, k=1,2,3,4\). Further, \(q_{\lambda ,1,1}(\varvec{x})=q_{\lambda ,1,2}(\varvec{x})=q_{\lambda ,1,3}(\varvec{x})=O\left( (\varvec{x}'\varvec{x})^{-\lambda (\nu +d)/2}\right) \) and \(q_{\lambda ,1,4}(\varvec{x})=O\left( (\varvec{x}'\varvec{x})^{-\lambda (\nu +d)/2}\ln (\varvec{x}'\varvec{x})\right) \), so that \(q_{\lambda ,1,k}(\varvec{x})\le q'_{\lambda ,1,k}\) for some constants \(q'_{\lambda ,1,k}, k=1,2,3,4\). Let \(l_{\lambda ,1}=(1+\lambda )\max \{w_{\lambda ,1,k}+q'_{\lambda ,1,k},~k=1,2,3,4\}\). Then, \(|{\partial V_{\lambda }(\theta ;\varvec{x})}/{\partial \theta _i}|\le l_{\lambda ,1}~\text{ for }~1\le i\le \rho \). The cases of \(r=2,3\) can be derived similarly. This establishes the lemma. \(\square \)

The proofs of the following lemma and Theorem 3.1 are presented in the supplementary material.

Lemma 6.2

Let \(\varvec{X}_1,\varvec{X}_2,\ldots \) be strictly stationary and ergodic. If

  1. (a)

    \(\Theta \) is compact;

  2. (b)

    \(A(\varvec{x},\theta )\) is continuous in \(\theta \) for all \(\varvec{x}\);

  3. (c)

    There exists \(B(\varvec{x})\) such that \(EB(\varvec{X})<\infty \) and \(|A(\varvec{x},\theta )|\le B(\varvec{x})\) for all \(\varvec{x}\) and \(\theta \),

then

$$\begin{aligned} P\left\{ \lim _{n\rightarrow \infty }\sup _{\theta \in \Theta }\left| \frac{1}{n}\sum _{t=1}^{n}A(\varvec{X}_t,\theta )-a(\theta ) \right| =0 \right\} =1, \end{aligned}$$
(6.1)

where \(a(\theta )=EA(\varvec{X},\theta )\).

In addition, if there exists \(\theta _0={{\mathrm{argmin}}}_{\theta \in \Theta }a(\theta )\) and it is unique, then

$$\begin{aligned} P\{\hat{\theta }_n\rightarrow \theta _0,~n\rightarrow \infty \}=1, \end{aligned}$$
(6.2)

where \(\hat{\theta }_n={{\mathrm{argmin}}}_{\theta \in \Theta }\frac{1}{n}\sum _{t=1}^{n}A(\varvec{X}_t,\theta )\).

Theorem 3.2 is a direct result of the next three lemmas whose proofs are detailed in the supplementary material.

Lemma 6.3

Under the conditions in Theorem 3.2,

$$\begin{aligned} \sqrt{n}U_{\lambda ,n}(\theta _\lambda )\mathop {\rightarrow }\limits ^{d}N(\mathbf{0},K_\lambda )~\text{ as }~n\rightarrow \infty . \end{aligned}$$

Lemma 6.4

Under the conditions in Theorem 3.2, \(R_{\lambda ,n}\) converges to \(J_\lambda \) a.s..

Lemma 6.5

Under the conditions in Theorem 3.2, \(\sqrt{n}\Vert \Delta _{\lambda ,n}\Vert =o_p(1)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Lee, S. Minimum density power divergence estimator for covariance matrix based on skew \(t\) distribution. Stat Methods Appl 23, 565–575 (2014). https://doi.org/10.1007/s10260-014-0284-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-014-0284-5

Keywords

Navigation