Skip to main content
Log in

A flexible generalization of the skew normal distribution based on a weighted normal distribution

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

The skew normal distribution of Azzalini (Scand J Stat 12:171–178, 1985) has been found suitable for unimodal density but with some skewness present. Through this article, we introduce a flexible extension of the Azzalini (Scand J Stat 12:171–178, 1985) skew normal distribution based on a symmetric component normal distribution (Gui et al. in J Stat Theory Appl 12(1):55–66, 2013). The proposed model can efficiently capture the bimodality, skewness and kurtosis criteria and heavy-tail property. The paper presents various basic properties of this family of distributions and provides two stochastic representations which are useful for obtaining theoretical properties and to simulate from the distribution. Further, maximum likelihood estimation of the parameters is studied numerically by simulation and the distribution is investigated by carrying out comparative fitting of three real datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arellano-Valle RB, Cortes MA, Gomez HW (2010) An extension of the epsilon-skew-normal distribution. Commun Stat Theory Methods 39(5):912–922

    Article  MathSciNet  MATH  Google Scholar 

  • Arellano-Valle RB, Gomez HW, Quintana FA (2004) A new class of skew-normal distributions. Commun Stat Theory Methods 33(7):1465–1480

    Article  MathSciNet  MATH  Google Scholar 

  • Arnold BC, Gomez HW, Salinas HS (2014) A doubly skewed normal distribution. Stat J Theor App Stat 49(4):842–858

    MathSciNet  MATH  Google Scholar 

  • Azzalini A (1985) A class of distributions which include the normal. Scand J Stat 12:171–178

    MathSciNet  MATH  Google Scholar 

  • Azzalini A (1986) Further results on a class of distributions which includes the normal ones. Statistica 46:199–208

    MathSciNet  MATH  Google Scholar 

  • Azzalini A, Bowman AW (1990) A look at some data on the Old Faithful geyser. J R Stat Soc Ser C 39(3):357–365

    MATH  Google Scholar 

  • Azzalini A, Regoli G (2012) Some properties of skew-symmetric distributions. Ann Inst Stat Math 64(4):857–879

    Article  MathSciNet  MATH  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Chiogna M (2005) A note on the asymptotic distribution of the maximum likelihood estimator for the scalar skew-normal distribution. Stat Methods Appl 14(3):331–341

    Article  MathSciNet  MATH  Google Scholar 

  • Evans DL, Drew JH, Leemis LM (2008) The distribution of the Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling test statistics for exponential populations with estimated parameters. Commun Stat Simul Comput 37(7):1396–1421

    Article  MathSciNet  MATH  Google Scholar 

  • Elal-Olivero D (2010) Alpha-skew-normal distribution. Proyecc J Math 29(3):224–240

    MathSciNet  MATH  Google Scholar 

  • Ferreira JTAS, Steel MFJ (2006) A constructive representation of univariate skewed distributions. J Am Stat Assoc 101(474):823–829

    Article  MathSciNet  MATH  Google Scholar 

  • Fernandez C, Steel MFJ (1998) On Bayesian modeling of fat tails and skewness. J Am Stat Assoc 93(441):359–371

    MathSciNet  MATH  Google Scholar 

  • Gomez HW, Elal-Olivero D, Salinas HS, Bolfarine H (2011) Bimodal extension based on the skew-normal distribution with application to pollen data. Environmetrics 22(1):50–62

    Article  MathSciNet  Google Scholar 

  • Gupta AK, Chen T (2001) Goodness of fit tests for the skew-normal distribution. Commun Stat Simul Comput 30(4):907–930

    Article  MathSciNet  MATH  Google Scholar 

  • Gui W, Chen PH, Wu H (2013) A Symmetric Component Alpha Normal Slash Distribution: Properties and Inferences. J Stat Theory Appl 12(1):55–66

    Article  MathSciNet  Google Scholar 

  • Henze N (1986) A probabilistic representation of the skew-normal distribution. Scand J Stat 13(4):271–275

    MathSciNet  MATH  Google Scholar 

  • Kim HJ (2005) On a class of two-piece skew-normal distributions. Stat J Theor Appl Stat 39(6):537–553

    MathSciNet  MATH  Google Scholar 

  • Liseo B (1990) La classe delle densita normali sghembe: aspetti inferenziali da un punto di vista bayesiano. Statistica 50(1):71–82

    MathSciNet  Google Scholar 

  • Ma Y, Genton MG (2004) Flexible class of skew-symmetric distributions. Scand J Stat 31(3):459–468

    Article  MathSciNet  MATH  Google Scholar 

  • Mameli V, Musio M (2013) A generalization of the skew-normal distribution: the beta skew-normal. Commun Stat Theory Methods 42(12):2229–2244

    Article  MathSciNet  MATH  Google Scholar 

  • Martinez EH, Varela H, Gomez HW, Bolfarine H (2008) A note on the likelihood and moments of the skew-normal distribution. Stat Oper Res Trans 32(1):57–66

    MathSciNet  MATH  Google Scholar 

  • Mudholkar GS, Hutson AD (2000) The epsilon-skew-normal distribution for analyzing near normal data. J Stat Plan Inference 83(2):291–309

    Article  MathSciNet  MATH  Google Scholar 

  • Nekoukhou V, Alamatsaz MH, Aghajani AH (2013) A flexible skew-generalized normal distribution. Commun Stat Theory Methods 42(13):2324–2334

    Article  MathSciNet  MATH  Google Scholar 

  • Owen DB (1956) Tables for computing bivariate normal probabilities. Ann Math Stat 27(4):1075–1090

    Article  MathSciNet  MATH  Google Scholar 

  • Pewsey A (2000) Problems of inference for Azzalini’s skew-normal distribution. J Appl Stat 27(7):859–870

    Article  MATH  Google Scholar 

  • Roberts HV (1988) Data analysis for managers with Minitab. Scientific Press, Redwood City

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge helpful comments and suggestions from three referees that substantially improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Rasekhi.

Appendix 1

Appendix 1

1.1 Appendix A.1: score vector and Hessian matrix

Let \(x_1 , x_2 ,\ldots , x_n\) is a random sample drawn from the skew symmetric component normal distribution \(SSCN(\mu ,\sigma ,\lambda ,\alpha )\), then the log-likelihood function is given by (13). The elements of the score vector are obtained by differentiation

$$\begin{aligned} \ell _{\mu }= & {} \frac{{ - 2\alpha }}{\sigma }\sum \limits _{i = 1}^n {\frac{{z_i }}{{1 + \alpha z_i^2 }}} + \frac{1}{\sigma }\sum \limits _{i = 1}^n {z_i } - \frac{\lambda }{\sigma }\sum \limits _{i = 1}^n {w_i (0)}, \\ \ell _{\sigma }= & {} \frac{{ - 2n}}{\sigma } - \frac{{2\alpha }}{\sigma }\sum \limits _{i = 1}^n {\frac{{z_i^2 }}{{1 + \alpha z_i^2 }}} + \frac{1}{\sigma }\sum \limits _{i = 1}^n {z_i^2 } - \frac{\lambda }{\sigma }\sum \limits _{i = 1}^n {w_i (1)}, \\ \ell _{\lambda }= & {} \sum \limits _{i = 1}^n {w_i (1)} \\ \ell _{\alpha }= & {} \sum \limits _{i = 1}^n {\frac{{z_i^2 }}{{1 + \alpha z_i^2 }}} - \frac{n}{{1 + \alpha }}, \end{aligned}$$

where \(z_i = \frac{{x_i - \mu }}{\sigma }\) and \(w_i (a) = \sum \limits _{i = 1}^n {z_i^a \frac{{\phi (\lambda z_i )}}{{\varPhi (\lambda z_i )}}}\).

The Hessian matrix, second partial derivatives of the log-likelihood, is given by

$$\begin{aligned} \left( {\begin{array}{*{20}{c}} {{\ell _{\mu ,\mu }}} &{}\quad {{\ell _{\mu ,\sigma }}} &{} \quad {{\ell _{\mu ,\lambda }}} &{}\quad {{\ell _{\mu ,\alpha }}} \\ {{\ell _{\sigma ,\mu }}} &{}\quad {{\ell _{\sigma ,\sigma }}} &{}\quad {{\ell _{\sigma ,\lambda }}} &{}\quad {{\ell _{\sigma ,\alpha }}} \\ {{\ell _{\lambda ,\mu }}} &{}\quad {{\ell _{\lambda ,\sigma }}} &{}\quad {{\ell _{\lambda ,\lambda }}} &{} \quad {{\ell _{\lambda ,\alpha }}} \\ {{\ell _{\alpha ,\mu }}} &{}\quad {{\ell _{\alpha ,\sigma }}} &{}\quad {{\ell _{\alpha ,\lambda }}} &{}\quad {{\ell _{\alpha ,\alpha }}} \\ \end{array}} \right) \end{aligned}$$

where

$$\begin{aligned} \ell _{\mu ,\mu }= & {} \frac{1}{{\sigma ^2 }}\left\{ {2\alpha \sum \limits _{i = 1}^n {\frac{{1 - \alpha z_i^2 }}{{(1 + \alpha z_i^2 )^2 }}} - n - \lambda ^2 \sum \limits _{i = 1}^n {\frac{{\phi (\lambda z_i )\left( {\lambda z_i \varPhi (\lambda z_i ) + \phi (\lambda z_i )} \right) }}{{\varPhi ^2 (\lambda z_i )}}} } \right\} ,\\ \ell _{\mu ,\sigma }= & {} \ell _{\sigma ,\mu } = \frac{1}{{\sigma ^2 }}\left\{ {4\alpha \sum \limits _{i = 1}^n {\frac{{z_i + \alpha z_i^3 - \alpha z_i^4 }}{{(1 + \alpha z_i^2 )^2 }}} \, - 1\sum \limits _{i = 1}^n {z_i } } \right. \\&\qquad \left. {\,+ \lambda \sum \limits _{i = 1}^n {\frac{{\phi (\lambda z_i )\left( {\varPhi (\lambda z_i ) - \lambda ^2 z_i^2 \varPhi (\lambda z_i ) - \lambda z_i \phi (\lambda z_i )} \right) }}{{\varPhi ^2 (\lambda z_i )}}} } \right\} , \\ \ell _{\mu ,\alpha }= & {} \ell _{\alpha ,\mu } = \frac{{ - 2}}{\sigma }\sum \limits _{i = 1}^n {\frac{{z_i }}{{(1 + \alpha z_i^2 )^2 }}}, \\ \ell _{\mu ,\lambda }= & {} \ell _{\lambda ,\mu } = \frac{{ - 1}}{\sigma }\sum \limits _{i = 1}^n {\frac{{\phi (\lambda z_i )\left( {\varPhi (\lambda z_i ) - \lambda ^2 z_i^2 \varPhi (\lambda z_i ) - \lambda z_i \phi (\lambda z_i )} \right) }}{{\varPhi ^2 (\lambda z_i )}}}, \\ \ell _{\sigma ,\sigma }= & {} \frac{1}{{\sigma ^2 }}\left\{ {2n + 2\alpha \sum \limits _{i = 1}^n {\frac{{\alpha z_i^4 - z_i^2 }}{{(1 + \alpha z_i^2 )^2 }} - 3\sum \limits _{i = 1}^n {z_i^2 } } } \right. \\&\left. \qquad {\,+ \lambda \sum \limits _{\iota = 1}^n {\frac{{z_i \phi (\lambda z_i )\left( {\varPhi (\lambda z_i ) - (\lambda ^2 z_i^2 - 1)\varPhi (\lambda z_i ) + \lambda z_i \phi (\lambda z_i )} \right) }}{{\varPhi ^2 (\lambda z_i )}}} } \right\} , \\ \ell _{\sigma ,\alpha }= & {} \ell _{\alpha ,\sigma } = \frac{{ - 2}}{\sigma }\sum \limits _{i = 1}^n {\frac{{z_i^2 }}{{(1 + \alpha z_i^2 )^2 }}},\\ \ell _{\sigma \lambda }= & {} \ell _{\lambda \sigma } = \frac{1}{\sigma }\sum \limits _{i = 1}^n {\frac{{z_i \phi (\lambda z_i )\left( { - \varPhi (\lambda z_i ) + \lambda ^2 z_i^2 \varPhi (\lambda z_i ) + \lambda z_i \phi (\lambda z_i )} \right) }}{{\varPhi ^2 (\lambda z_i )}}},\\ \ell _{\alpha ,\alpha }= & {} \frac{n}{{(1 + \alpha )^2 }} - \sum \limits _{i = 1}^n {\frac{{z_i^4 }}{{\left( {1 + \alpha z_i^2 } \right) }}},\\ \ell _{\lambda \alpha }= & {} \ell _{\alpha \lambda } = 0, \\ \ell _{\lambda \lambda }= & {} \sum \limits _{i = 1}^n {\frac{{z_i^2 \left( { - \lambda z_i \phi (\lambda z_i )\varPhi (\lambda z_i ) - \phi ^2 (\lambda z_i )} \right) }}{{\varPhi ^2 (\lambda z_i )}}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasekhi, M., Chinipardaz, R. & Alavi, S.M.R. A flexible generalization of the skew normal distribution based on a weighted normal distribution. Stat Methods Appl 25, 375–394 (2016). https://doi.org/10.1007/s10260-015-0337-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-015-0337-4

Keywords

Mathematics Subject Classification

Navigation