Skip to main content
Log in

The class of cub models: statistical foundations, inferential issues and empirical evidence

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

This paper discusses a general framework for the analysis of rating and preference data that is rooted on a class of mixtures of discrete random variables. These models have been extensively studied and applied in the last 15 years thanks to a flexible and parsimonious parametrization of data generating process and to prompt interpretation of results. The approach considers the final response as the combination of feeling and uncertainty, by allowing for finer model specifications to include refuge options, response styles and possible overdispersion, also in relation to subjects’ and objects’ covariates. The article establishes the state of art of the research inherent to this paradigm, in terms of methodology, inferential procedures and fitting measures, by emphasizing capabilities and limitations yet establishing new findings. In particular, explicative power and predictive performances of cub statistical models for ordinal data are examined and new topics that could boost and support the modelling of uncertainty in this framework are provided. Possible developments are outlined throughout the whole presentation and final comments conclude the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agresti A (1986) Applying $R^2$-type measures to ordered categorical data. Technometrics 28(2):133–138

    Google Scholar 

  • Agresti A (2010) Analysis of ordinal categorical data, 2nd edn. Wiley, Hoboken

    MATH  Google Scholar 

  • Agresti A, Kateri M (2017) Ordinal probability effect measures for group comparisons in multinomial cumulative link models. Biometrics 73:214–219

    MathSciNet  MATH  Google Scholar 

  • Agresti A, Lang JB (1993) A proportional odds model with subject-specific effects for repeated ordered categorical responses. Biometrika 80:527–534

    MathSciNet  MATH  Google Scholar 

  • Agresti A, Natarajan R (2001) Modeling clustered ordered categorical data: a survey. Int Stat Rev 69:345–371

    MATH  Google Scholar 

  • Agresti A, Tarantola C (2018) Simple ways to interpret effects in modeling ordinal categorical data. Statistica Neerlandica 72(3):210–223

    MathSciNet  Google Scholar 

  • Allik J (2014) A mixed-binomial model for Likert-type personality measure. Front Psychol 5:1–13

    Google Scholar 

  • Anderson JA (1984) Regression and ordered categorical variables. J R Stat Soc Ser B 46:1–30

    MathSciNet  MATH  Google Scholar 

  • Anderson JA, Philips PR (1981) Regression, discrimination and measurement models for ordered categorical variables. J R Stat Soc Ser C 30:22–31

    MathSciNet  MATH  Google Scholar 

  • Andreis F, Ferrari PA (2013) On a copula model with cub margins. Quaderni di Statistica. J Methodol Appl Stat 15:33–51

    Google Scholar 

  • Andrich (1978) A binomial latent trait model for the study of Likert-style attitude questionnaires. Br J Math Stat Psychol 31:84–98

    MATH  Google Scholar 

  • Banfield JD, Raftery AE (1993) Model-based Gaussian and non-Gaussian clustering. Biometrics 49:803–821

    MathSciNet  MATH  Google Scholar 

  • Bartolucci F, Farcomeni A, Pennoni F (2012) Latent Markov models for longitudinal data. Chapman and Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Baum CF, Cerulli C, Di Iorio F, Piccolo D, Simone R (2018) The Stata module cub for fitting mixture models for ordinal data. XV Italian Meeting of STATA Users, Bologna, Nov 15–16

  • Baumgartner H, Steenback JB (2001) Response styles in marketing research: across-national investigation. J Market Res 38:143–156

    Google Scholar 

  • Bianconcini S, Mignani S (2008) Latent variable models for longitudinal data in educational studies. In: Proceedings of the XLIV scientific meeting of SIS, CLEUP, Padua, pp 225–232

  • Birnbaum A (1968) Some latent trait models and their use in inferring an examinee’s ability. In: Lord FM, Novick MR (eds) Statistical theories of mental test scores. Addison-Wesley Publishing, Reading, pp 397–472

    Google Scholar 

  • Bonnini S, Piccolo D, Salmaso L, Solmi F (2012) Permutation inference for a class of mixture models. Commun Stat Theory Methods 41(16–17):2879–2895

    MathSciNet  MATH  Google Scholar 

  • Box GEP, Draper NR (1987) Empirical model building and response surfaces. Wiley, New York

    MATH  Google Scholar 

  • Bradbum NM, Sudman S, Blair E (1979) Improving interview method and questionnaire design. Jossey-Bass Publishers, San Francisco

    Google Scholar 

  • Breen R, Luijkx R (2010) Mixture models for ordinal data. Sociol Methods Res 39:3–24

    MathSciNet  Google Scholar 

  • Brentari E, Manisera M, Zuccolotto P (2018) Modelling preceived variety in a choice process with nonlinear cub. In: Capecchi S, Di Iorio F, Simone R (eds.), Proceedings of the international conference ASMOD 2018. Federico II University Press, Naples, pp 69–76. ISBN 978-88-6887-042-3

  • Brier GW (1950) Verification of forecasts expressed in terms of probability. Month Weather Rev 78(1):1–3

    Google Scholar 

  • Cagnone S, Mignani S, Moustaki S (2009) Latent variable models for ordinal data. In: Bini M, Monari P, Piccolo D, Salmaso L (eds) Statistical methods for the evaluation of educational services and quality of products. Springer, Berlin, pp 17–28

    Google Scholar 

  • Cagnone S, Moustaki I, Vasdekis V (2009) Latent variable models for multivariate longitudinal ordinal responses. Br J Math Stat Psychol 62(2):401–415

    MathSciNet  MATH  Google Scholar 

  • Capecchi S (2015) Modelling the perception of conflict in working conditions. Electron J Appl Stat 8(3):298–311

    MathSciNet  Google Scholar 

  • Capecchi S (2017) Measuring indecision in happiness studies. In: Brulé G, Maggino F (eds) Metrics of subjective well-being: limits and improvements. Springer, Dordrecht, pp 133–153

    Google Scholar 

  • Capecchi S, Endrizzi I, Gasperi F, Piccolo D (2016) A multi-product approach for detecting subjects’ and objects’ covariates in consumer preferences. Br Food J 118(3):515–526

    Google Scholar 

  • Capecchi S, Iannario M (2016) Gini heterogeneity index for detecting uncertainty in ordinal data surveys. Metron 74:223–232

    MathSciNet  MATH  Google Scholar 

  • Capecchi S, Iannario M, Simone R (2018) Well-being and relational goods: a model-based approach to detect significant relationships. Soc Indic Res 135(2):729–750

    Google Scholar 

  • Capecchi S, Piccolo D (2014) Modelling the latent components of personal happiness. In: Perna C, Sibillo M (eds) Mathematical and statistical methods for actuarial sciences and finance. Springer, Springer, pp 49–52

    Google Scholar 

  • Capecchi S, Piccolo D (2016) Investigating the determinants of job satisfaction of Italian graduates: a model-based approach. J Appl Stat 43(1):169–179

    MathSciNet  Google Scholar 

  • Capecchi S, Piccolo D (2017) Dealing with heterogeneity in ordinal responses. Qual Quant 51:2375–2393

    Google Scholar 

  • Capecchi S, Simone R (2019) A proposal for a model-based composite indicators: experience on perceived discrimination in Europe. Soc Indic Res 141(1):95–110

    Google Scholar 

  • Cappelli C, Simone R, Di Iorio F (2019) cubremot: a tool for building model-based trees for ordinal responses. Expert Syst Appl 124:39–49

    Google Scholar 

  • Carpita M, Ciavolino E, Nitti M (2018) The MIMIC-CUB model for the prediction of the economic public opinions in Europe. Soc Indic Res. https://doi.org/10.1007/s11205-018-1885-4

    Google Scholar 

  • Colombi R, Giordano S (2016) A class of mixture models for multidimensional ordinal data. Stat Model 16(4):322–340

    MathSciNet  Google Scholar 

  • Colombi R, Giordano S (2018) A flexible distribution to handle responses styles when modelling rating scale data. In: Capecchi S, Di Iorio F, Simone R (eds) Proceedings of the international conference ASMOD2018. Federico II University Press, Naples, pp 77–84. ISBN 978-88-6887-042-3

  • Colombi R, Giordano S, Gottard A, Iannario M (2018) Hierarchical marginal models with latent uncertainty. Scand J Stat. https://doi.org/10.1111/sjos.12366

    MATH  Google Scholar 

  • Corduas M (2008a) Clustering cub models by Kullback-Liebler divergence. In: Proceedings of SCF-CLAFAG Meeting, ESI, Napoli, pp 245–248

  • Corduas M (2008b) A statistical procedure for clustering ordinal data. Quaderni di Statistica 10:177–189

  • Corduas M (2011a) A study on University students’ opinions about teaching quality: a model based approach to clustering ordinal data. In: Attanasio M, Capursi V (eds) Statistical Methods for the Evaluation of University Systems. Physica-Verlag, Springer, Berlin, pp 67–78

    Google Scholar 

  • Corduas M (2011b) Assessing similarity of rating distributions by Kullback–Liebler divergence. In: Fichet A et al (eds) Classification and multivariate analysis for complex data structures, studies in classification, data analysis, and knowledge organization. Springer, Berlin, pp 221–228

    Google Scholar 

  • Corduas M (2011c) Modelling correlated bivariate ordinal data with cub marginals. Quaderni di Statistica 13:109–119

  • Corduas M (2015a) Analyzing bivariate ordinal data with cub margins. Stat Model 15(5):411–432

  • Corduas M (2015b) Modelling correlated consumer preferences. In: Carpita M, Brentari E, Qannari El Mostafa (eds) Advances in latent variables, studies in theoretical and applied statistics. Springer, Berlin, pp 27–36

    Google Scholar 

  • Corduas M (2015c) Modelling correlated ordinal data by a copula approach. In: Proceedings of the 30th international workshop on statistical modelling, Johannes Kepler Universität , Linz, 2:71–74

  • Corduas M (2018) Joint modelling of ordinal data: a copula-based method. In: Capecchi S, Di Iorio F, Simone R (eds) Proceedings of the international conference ASMOD 2018. Federico II University Press, Naples, pp 84–92. ISBN 978-88-6887-042-3

  • Corduas M, Iannario M, Piccolo D (2009) A class of statistical models for evaluating services and performances. In: Bini M et al (eds) Statistical methods for the evaluation of educational services and quality of products. Contribution to Statistics. Physica-Verlag, Springer, Berlin Heidelberg, pp 99–117

    Google Scholar 

  • Cugnata F, Salini S (2017) Comparison of alternative imputation methods for ordinal data. Communications in Statistics. Simul Comput 46(1):315–330

    MATH  Google Scholar 

  • Dayton CM, Macready GB (1988) Concomitant-variable latent-class models. J Am Stat Assoc 83:173–178

    MathSciNet  Google Scholar 

  • Deldossi L, Paroli R (2015) Bayesian variable selection in a class of mixture models for ordinal data: a comparative study. J Stat Comput Simul 85(10):1926–1944

    MathSciNet  Google Scholar 

  • D’Elia A (2000a) The mechanism of paired comparisons in rank modelling: statistical issues and critical considerations (in Italian). Quaderni di Statistica 2:173–203

  • D’Elia A (2000b) A shifted Binomial model for rankings. In: Nunez-Anton V, Ferreira E (eds) Statistical modelling. In: 15th International workshop on statistical modelling. Servicio Editorial de la Universidad del Pais Vasco, pp 412–416

  • D’Elia A (2003a) Finite sample performance of the E-M algorithm for ranks data modelling. Statistica 63(1):41–51

  • D’Elia A (2003b) Modelling ranks using the inverse hypergeometric distribution. Stat Model 3(1):65–78

  • D’Elia A, Piccolo D (2005a) A mixture model for preference data analysis. Comput Stat Data Anal 49:917–934

  • D’Elia A, Piccolo D (2005b) The moment estimator for the IHG distribution. In: Provasi C (ed) Proceedings of the IV S.Co. 2005 Meeting, CLEUP, Padova, pp 245–250

  • D’Elia A, Piccolo D (2005c) A model based approach for testing homogeneity among evaluation data. In: Zani S, Cerioli A (eds) Proceedings of the CLADAG-2005 Meeting, Parma, pp 83–86

  • D’Elia A, Piccolo D (2005d) Uno studio sulla percezione delle emergenze metropolitane: un approccio modellistico. Quaderni di Statistica 7:121–161

  • D’Elia A, Piccolo D (2006) Analyzing evaluation data: modelling and testing for homogeneity. In: Zani S et al (eds) Data analysis, classification and the forward search, Springer, Berlin, pp 299–307

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J Royal Stat Soc Ser B 39:1–38

    MATH  Google Scholar 

  • Di Iorio F, Iannario M (2012) Residual diagnostics for assessing the fit of cub models. Statistica 72:163–172

    Google Scholar 

  • Di Iorio F, Piccolo D (2009) Generalized residuals in cub models. Quaderni di Statistica 11:73–88

    Google Scholar 

  • Di Nardo E, Simone R (2018) A model-based fuzzy analysis of questionnaires. Stat Meth Appl. https://doi.org/10.1007/s10260-018-00443-9

    MATH  Google Scholar 

  • Easterlin RA (1974) Does economic growth improve the human lot? In: David PA, Reder MW (eds) Nations and households in economic growth: essays in honor of Moses Abramovitz. Academic Press Inc, New York

    Google Scholar 

  • Easterlin RA, McVey LA, Switek M, Sawangfa O, Zweig JS (2010) The happiness-income paradox revisited. Proc Natl Acad Sci USA 107(52):22463–22468

    Google Scholar 

  • Epstein ES (1969) A scoring system for probability forecasts of ranked categories. J Appl Meteorol Climatol 8(6):985–987

    Google Scholar 

  • Everitt BS (1988) A finite mixture for the clustering of mixed-mode data. Stat Prob Lett 6(5):305–309

    MathSciNet  Google Scholar 

  • Fasola S, Sciandra M (2015) New flexible probability distributions for ranking data. In: Morlini I, Minerva T, Vichi M (eds) Advances in statistical models for data analysis. Springer, Berlin, pp 117–124

    Google Scholar 

  • Ferrari S, Cribari-Neto F (2004) Beta regression for modelling rates and proportions. J Appl Stat 31:799–815

    MathSciNet  MATH  Google Scholar 

  • Fin F, Iannario M, Simone R, Piccolo D (2017) The effect of uncertainty on the assessment of individual performance: empirical evidence from professional soccer. Electron J Appl Stat Anal 10(3):677–692

    Google Scholar 

  • Forcina A, Dardanoni V (2008) Regression models for multivariate ordered responses via the Plackett distribution. J Multivar Anal 99:2472–2478

    MathSciNet  MATH  Google Scholar 

  • Fraley C, Raftery AE (1998) How many clusters? Which clustering method?—answers via model-based cluster analysis. Comput J 41:578–588

    MATH  Google Scholar 

  • Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97:611–631

    MathSciNet  MATH  Google Scholar 

  • Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, New York

    Google Scholar 

  • Gini C (1912) Variabilità e mutabilità. Studi economico-giuridici, Facoltà di Giurisprudenza, Università di Cagliari, A, III, parte II

  • Gneiting T, Raftery AE (2007) Strictly proper scoring rules, prediction, and estimation. J Am Stat Assoc 102(477):359–378

    MathSciNet  MATH  Google Scholar 

  • Golia S (2015) On the interpretation of the uncertainty parameter in cub models. Electron J Appl Stat Anal 8(3):312–328

    MathSciNet  Google Scholar 

  • Gormley IC, Murphy TB (2006) Analysis of Irish third-level college application data. J R Stat Soc Ser A 169:361–379

    MathSciNet  Google Scholar 

  • Gormley IC, Murphy TB (2008) Exploring voting blocs within the Irish electorate: a mixture modeling approach. J Am Stat Assoc 103(483):1014–1027

    MathSciNet  MATH  Google Scholar 

  • Gottard A, Iannario M, Piccolo D (2016) Varying uncertainty in cub models. Adv Data Anal Classif 10(2):225–244

    MathSciNet  MATH  Google Scholar 

  • Granger CJ (1969) Investigating Causal Relationships by Econometrics Models and Cross Spectral Methods. Econometrica 37:425–435

    Google Scholar 

  • Greene WH, Hensher DA (2003) A latent class model for discrete choice analysis: contrasts with mixed logit. Transp Res Part B 37:681–689

    Google Scholar 

  • Grilli L, Iannario M, Piccolo D, Rampichini C (2014) Latent class cub models. Adv Data Anal Classif 8:105–119

    MathSciNet  Google Scholar 

  • Grilli L, Rampichini C (2012) Multilevel models for ordinal data. In: Kenett RS, Salini S (eds) Modern analysis of customer surveys. Wiley, New York, pp 391–411

    Google Scholar 

  • Grilli L, Rampichini C, Varriale R (2015) Binomial mixture modelling of university credits. Communications in statistics. Theory Methods 44(22):4866–4879

    MathSciNet  MATH  Google Scholar 

  • Grün B, Leisch F (2008) Identifiability of finite mixtures of multinomial logit models with varying and fixed effects. J Classif 25:225–247

    MathSciNet  MATH  Google Scholar 

  • Grün B, Leisch F (2009) Dealing with label switching in mixture models under genuine multimodality. J Multivar Anal 100:851–861

    MathSciNet  MATH  Google Scholar 

  • Han KT (2012) Fixing the $c$ parameter in the three-parameter logistic model. Pratic Assess Res Eval 17(1):1–24

    Google Scholar 

  • Hedeker D (2008) Multilevel models for ordinal and nominal variables. In: De Leeuw J, Meijer E (eds) Handbook of multilevel analysis. Springer, New York, pp 237–274

    Google Scholar 

  • Hedeker D, Gibbons RD (1994) A random-effects ordinal regression model for multilevel analysis. Biometrics 50:933–944

    MATH  Google Scholar 

  • Hox JJ (2002) Multilevel analysis: techniques and applications. Erlbaum, Mahwah

    MATH  Google Scholar 

  • Hox JJ, Roberts JK (2010) Handbook of advanced multilevel analysis. Routledge, New York

    Google Scholar 

  • Iannario M (2010) On the identifiability of a mixture model for ordinal data. Metron 68:87–94

    MathSciNet  MATH  Google Scholar 

  • Iannario M (2012a) Modelling shelter choices in a class of mixture models for ordinal responses. Stat Methods Appl 21:1–22

  • Iannario M (2012b) cube models for interpreting ordered categorical data with overdispersion. Quaderni di Statistica 14:137–140

  • Iannario M (2012c) Preliminary estimators for a mixture model of ordinal data. Adv Data Anal Classif 6:163–184

  • Iannario M (2012d) Hierarchical cub models for ordinal variables. Commun Stat Theory Meth 41(16–17):3110–3125

  • Iannario M (2014) Modelling uncertainty and overdispersion in ordinal data. Commun Stat Theory Meth 43:771–786

    MathSciNet  MATH  Google Scholar 

  • Iannario M (2015) Modelling scale effects and uncertainty in rating surveys. Electron J Appl Stat Anal 8(3):329–345

    MathSciNet  Google Scholar 

  • Iannario M, Manisera M, Piccolo D, Zuccolotto P (2018) Ordinal data models for No-opinion responses in attitude surveys. Sociol Methods Res 6(4):1–27

    Google Scholar 

  • Iannario M, Monti AC, Piccolo D (2016) Robustness issues in cub models. TEST 25(4):731–750

    MathSciNet  MATH  Google Scholar 

  • Iannario M, Monti AC, Piccolo D, Ronchetti E (2017) Robust inference for ordinal response models. Electron J Stat 11:3407–3445

    MathSciNet  MATH  Google Scholar 

  • Iannario M, Monti AC, Scalera P (2018) Why the number of response categories in rating scales should be large. In: Capecchi S, Di Iorio F, Simone R (eds) Proceedings of the international conference ASMOD 2018. Federico II University Press, Naples, pp 139–146. ISBN 978-88-6887-042-3

  • Iannario M, Piccolo D (2012) A framework for modelling ordinal data in rating surveys. In: Proceedings of Joint statistical meetings, section on statistics in marketing, San Diego, California, pp 3308–3322

  • Iannario M, Piccolo D (2016a) A generalized framework for modelling ordinal data. Stat Methods Appl 25:163–189

  • Iannario M, Piccolo D (2016b) A comprehensive framework of regression models for ordinal data. Metron 74:233–252

  • Iannario M, Piccolo D, Simone R (2018) CUB: a class of mixture models for ordinal data. R package version 1(1):3. http://CRAN.R-project.org/package=CUB

  • Iannario M, Simone R (2017a) Mixture models for rating data: the method of moments via Gröbner basis. J Algebr Stat 8(2):1–28

  • Iannario M, Simone R (2017b) Zero inflated cub models for the evaluation of leisure time activities. In: CLADAG 2017 Book of Short Papers, pp 1–6. ISBN: 9788899459710

  • Jasberg K, Sizov S (2017) The Magic barrier revisited: accessing natural limitations of recommender assessment. In: Proceedings of the 11th ACM conference on recommender systems, pp 56–64

  • Jonung L (1986) Uncertainty about inflationary perceptions and expectations. J Econ Psychol 7:315–325

    Google Scholar 

  • Kateri M (2014) Contingency table analysis: methods and implementations using R. Birkäuser, Springer, New York

    MATH  Google Scholar 

  • Kenett RS, Salini S (2011) Modern analysis of customer satisfaction surveys: comparison of models and integrated analysis. Appl Stoch Models Bus Ind 27(5):465–475

    MathSciNet  Google Scholar 

  • Kenett RS, Salini S (eds) (2012) Modern Analysis of Customer Surveys: with Applications using R. Wiley, Chivhester

  • Kleyner A, Bhagath S, Gasparini M, Robinson J, Bender M (1997) Bayesian techniques to reduce the sample size in automotive electronics attribute testing. Microelectron Reliabil 37(6):879–883

    Google Scholar 

  • Köster EP (2009) Diversity in the determinants of food choice: a psychological perspective. Food Qual Prefer 20:70–82

    Google Scholar 

  • Krosnick JA (1991) Response strategies for coping with the cognitive demands of attitude measures in surveys. Appl Cogn Psychol 5:213–236

    Google Scholar 

  • Krosnick JA (1999) Surveys research. Ann Rev Psychol 50:537–567

    Google Scholar 

  • Laakso M, Taagepera R (1989) Effective number of parties: a measure with application to West Europe. Compar Polit Stud 12:3–27

    Google Scholar 

  • Lambert D (1992) Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics 34(1):1–14

    MATH  Google Scholar 

  • Lang JB, Agresti JW (1994) Simultaneously modelling joint and marginal distribution of multivariate categorical responses. J Am Stat Assoc 89:625–632

    MATH  Google Scholar 

  • Lee PM (2012) Bayesian statistics: an introduction, 4th edn. Wiley, New York

    MATH  Google Scholar 

  • Li C, Shepherd BE (2012) A new residual for ordinal outcomes. Biometrika 99(2):473–480

    MathSciNet  MATH  Google Scholar 

  • Liu D, Zhang H (2018) Residuals and diagnostics for ordinal regression models: a surrogate approach. J Am Stat Soc 113(522):845–854

    MathSciNet  MATH  Google Scholar 

  • Lord FM (1980) Applications of item response theory to practical testing problems. Erlbaum, Hillsdale

    Google Scholar 

  • Louis TA (1982) Finding the observed information matrix when using the EM algorithm. J R Stat Soc Ser B 44:226–233

    MathSciNet  MATH  Google Scholar 

  • Luchini S, Watson V (2013) Uncertainty and framing in a valuation task. J Econ Psychol 39:204–214

    Google Scholar 

  • Magee L (1990) $R^2$ measures based on wald and likelihood ratio joint significance tests. Technometrics 44(3):250–253

    Google Scholar 

  • Manisera M, Zuccolotto P (2014a) Modeling “don’t know” responses in rating scales. Pattern Recognit Lett 45:226–234

  • Manisera M, Zuccolotto P (2014b) Modeling rating data with nonlinear cub models. Comput Stat Data Anal 78:100–118

  • Manisera M, Zuccolotto P (2015) On the identifiability of nonlinear cub models. J Multivar Anal 140:302–316

    MATH  Google Scholar 

  • Marasini D, Quatto P, Ripamonti E (2015) Intuitionistic fuzzy sets in questionnaire analysis. Qual Quant 50:767–790

    Google Scholar 

  • McFadden K (1978) Modeling the choice of residential location. In: Karlqvist A et al (ed) Spatial interaction theory and residential location. Amsterdam, North-Holland, pp 75–76

  • McCullagh P (1980) Regression models for ordinal data (with discussion). J R Stat Soc Ser B 42:109–142

    MATH  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London

    MATH  Google Scholar 

  • McLachlan G, Krishnan T (2008) The EM algorithm and extensions, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • McLachlan G, Peel GJ (2000) Finite mixture models. Wiley, New York

    MATH  Google Scholar 

  • Molenberghs G, Lesaffre E (1994) Marginal modelling of correlated ordinal data using multivariate Plackett distribution. J Am Stat Assoc 89:633–644

    MATH  Google Scholar 

  • Molenberghs G, Verbeke G (2007) Likelihood ratio, score, and Wald tests in a constrained parameter space. Am Stat 61:22–27

    MathSciNet  Google Scholar 

  • Morrison DG (1979) Purchase intentions and purchase behavior. J Market 43:65–74

    Google Scholar 

  • Moustaki I, Knott M (2000) Generalized latent trait models. Psychometrika 65:391–411

    MathSciNet  MATH  Google Scholar 

  • Mullahy J (1986) Specification and testing of some modified count data models. J Econom 33:341–365

    MathSciNet  Google Scholar 

  • Murphy AH (1970) The ranked probability score and the probability score: a comparison. Month Weather Rev 98(12):917–924

    Google Scholar 

  • Murphy TB, Martin D (2002) Mixtures of distances-based models for ranking data. Comput Stat Data Anal 41:645–655

    MathSciNet  MATH  Google Scholar 

  • Muschelli J, Betz J, Varadhan R (2014) Binomial regression in R (chapter 7). In: Rao MB, Rao CR (eds) Computational statistics with R, handbook of statistics, vol 32. Elsevier, Amsterdam, pp 257–308

    Google Scholar 

  • Oberski DL, Vermunt JK (2015) The relationship between cub and loglinear models with latent variables. Electron J Appl Stat Anal 8(3):374–383

    MathSciNet  Google Scholar 

  • Peryam DR, Pilgrim FJ (1957) Hedonic scale method of measuring food preferences. Food Technol 11:9–14

    Google Scholar 

  • Piccolo D (2003) On the moments of a mixture of uniform and shifted binomial random variables. Quad Stat 5:85–104

    Google Scholar 

  • Piccolo D (2006) Observed information matrix for MUB models. Quad Stat 8:33–78

    Google Scholar 

  • Piccolo D (2015) Inferential issues on cube models with covariates. Communications in statistics. Theory Methods 44:5023–5036

    MathSciNet  MATH  Google Scholar 

  • Piccolo D (2018) A new paradigm for rating data models. In: Abbruzzo A, Brentari E, Chiodi M, Piacentino D (eds) Book of short papers SIS 2018. Pearson Publisher, New York, pp 1–12 ISBN-9788891910233

    Google Scholar 

  • Piccolo D, D’Elia A (2008) A new approach for modelling consumers’ preferences. Food Qual Pref 19:247–259

    Google Scholar 

  • Piccolo D, Simone R, Iannario M (2018) Cumulative and cub models for rating data: a comparative analysis. Int Stat Rev. https://doi.org/10.1111/insr.12282

    Google Scholar 

  • Pinto da Costa JF, Alonso H, Cardoso JS (2008) The unimodal modal for the classification of ordinal data. Neur Netw 21:78–91 Corrigendum in: (2014). Neural Networks 59:73–75

    MATH  Google Scholar 

  • Powers DA, Xie Y (2000) Statistical methods for categorical data analysis. Academic Press, San Diego

    MATH  Google Scholar 

  • Rao CR (1973) Linear statistical inference and its applications, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Raudenbush SW, Bryk AS (2002) Hierarchical linear models. Sage, Newbury Park

    Google Scholar 

  • Samejima F (1997) Graded response model, handbook of modern item response theory. Springer, Berlin, pp 85–100

    Google Scholar 

  • Schutz HG, Cardello AV (2001) A labelled affective magnitude (LAM) scale for assessing food liking/disliking. J Sens Stud 16(2):117–159

    Google Scholar 

  • Self SG, Liang KY (2003) Asymptotic properties of maximum likelihood estimators and likelihood ratio test under nonstandard conditions. J Am Stat Assoc 82:605–610

    MathSciNet  MATH  Google Scholar 

  • Simon HA (1957) Models of man. Wiley, New York

    Google Scholar 

  • Simone R (2018) A test for variable importance. In: Abbruzzo A, Brentari E, Chiodi M, Piacentino D (eds) Book of short papers SIS 2018. Pearson Publisher, New York ISBN-9788891910233

    Google Scholar 

  • Simone R (2018b) Louis’ identity and fast estimation of mixture models for rating data (under review)

  • Simone R (2018c) A note on predictability for binomial models (Technical Report)

  • Simone R, Iannario M (2018) Analysing sport data with clusters of opposite preferences. Stat Model 18(5–6):1–20

    MathSciNet  Google Scholar 

  • Simone R, Tutz G (2018) Modelling uncertainty and response styles in ordinal data. Stat Neerlandica 72:224–245

    MathSciNet  Google Scholar 

  • Simone R, Cappelli C, Di Iorio F (2019a) Modelling marginal ranking distributions: the uncertainty tree (Forthcoming)

  • Simone R, Tutz G, Iannario M (2019b) Subjective heterogeneity in response attitude for multivariate ordinal outcomes (Forthcoming)

  • Skellam JG (1948) A probability distribution derived from the Binomial distribution by regarding the probability of success as variable between the sets of trials. J R Stat Soc Ser B 10(2):257–261

    MathSciNet  MATH  Google Scholar 

  • Tamhane A, Ankemanman B, Yang Y (2002) The Beta distribution as a latent response model for ordinal data (I): Estimation of location and dispersion parameters. J Stat Comput Simul 72(6):473–494

    MathSciNet  MATH  Google Scholar 

  • Titterington DM, Smith AFM, Makov UE (1985) Statistical analysis of finite mixture distributions. Wiley, New York

    MATH  Google Scholar 

  • Tourangeau R, Rips LJ, Rasinski K (2000) The psychology of survey response. Cambridge University Press, Cambridge

    Google Scholar 

  • Train KE (2003) Discrete choice methods with simulations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Tripathi RC, Gupta RC, Gurland J (1994) Estimation of parameters in Beta Binomial models. Ann Inst Stat Math 46(2):317–331

    MathSciNet  MATH  Google Scholar 

  • Tutz G (2012) Regression for categorical data. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Tutz G (2018) Uncertainty, dispersion and response styles in ordinal regression. In: Capecchi S, Di Iorio F, Simone R (eds) Proceedings of the international conference ASMOD 2018, Federico II University Press, Naples, pp 33–41. ISBN 978-88-6887-042-3

  • Tutz G, Schauberger G (2013) Visualization of categorical response models: from data glyphs to parameter glyphs. J Comput Gr Stat 22(1):156–177

    MathSciNet  Google Scholar 

  • Tutz G, Schauberger G, Berger M (2018) Response styles in the partial credit model. Appl Psychol Measur 42(6):407–427

    Google Scholar 

  • Tutz G, Schneider M, Iannario M, Piccolo D (2017) Mixture models for ordinal responses to account for uncertainty of choice. Adv Data Anal Classif 11(2):281–305

    MathSciNet  MATH  Google Scholar 

  • Ursino M (2014) Ordinal data: a new model with applications. Ph.D. Thesis, XXVI cycle, Polytechnic University of Turin, Turin

  • Ursino M, Gasparini M (2018) A new parsimonious model for ordinal longitudinal data with application to subjective evaluations of a gastrointestinal disease. Stat Methods Med Res 27(5):1376–1393

    MathSciNet  Google Scholar 

  • van der Linden WJ, Hambleton RK (eds) (1996) Handbook of modern item response theory. Springer, New York

    Google Scholar 

  • Vermunt JK, Magidson J (2013) Technical guide for latent gold 5.0: basic, advanced, and sintax. Statistical Innovations, Inc., Belmont

  • von Eye A, Mun E-Y (2012) Log-linear modeling: concepts, interpretation, and application. Wiley, New York

    MATH  Google Scholar 

  • Vu HTV, Zhou S (1997) Generalization of likelihood ratio tests under nonstandard conditions. Ann Stat 25:897–916

    MathSciNet  MATH  Google Scholar 

  • Wedel M, DeSarbo WS (1995) A mixture likelihood approach for generalized linear models. J Classif 12:21–55

    MATH  Google Scholar 

  • Zhou H, Lange K (2009) Rating movies and rating the raters who rate them. Am Stat 63:297–307

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors thank all the Discussants for their constructive comments. The research has been funded by the ‘cubRegression Model Trees project’ (Project No. 000025_ALTRI_DR_1043_2017-C-CAPPELLI) of the University of Naples Federico II, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosaria Simone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccolo, D., Simone, R. The class of cub models: statistical foundations, inferential issues and empirical evidence. Stat Methods Appl 28, 389–435 (2019). https://doi.org/10.1007/s10260-019-00461-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-019-00461-1

Keywords

Navigation