Skip to main content
Log in

Enhancing software model encoding for feature location approaches based on machine learning techniques

  • Regular Paper
  • Published:
Software and Systems Modeling Aims and scope Submit manuscript

Abstract

Feature location is one of the main activities performed during software evolution. In our previous works, we proposed an approach for feature location in models based on machine learning, providing evidence that machine learning techniques can obtain better results than other retrieval techniques for feature location in models. However, to apply machine learning techniques optimally, the design of an encoding is essential to be able to identify the best realization of a feature. In this work, we present more thorough research about software model encoding for feature location approaches based on machine learning. As part of this study, we have provided two new software model encodings and compared them with the source encoding. The first proposed encoding is an extension of the source encoding to take advantage of not only the main concepts and relations of a domain but also the properties of these concepts and relations. The second proposed encoding is inspired by the characteristics used in benchmark datasets for research on Learning to Rank. Afterward, the new encodings are used to compare three different machine learning techniques (RankBoost, Feedforward Neural Network, and Recurrent Neural Network). The study also considers whether a domain-independent encoding such as the ones proposed in this work can outperform an encoding that is specifically designed to exploit human experience and domain knowledge. Furthermore, the results of the best encoding and the best machine learning technique were compared to two traditional approaches that have been widely applied for feature location as well as for traceability link recovery and bug localization. The evaluation is based on two real-world case studies, one in the railway domain and the other in the induction hob domain. An approach for feature location in models evaluates these case studies with the different encodings and machine learning techniques. The results show that when using the second proposed encoding and RankBoost, the approach outperforms the results of the other encodings and machine learning techniques and the results of the traditional approaches. Specifically, the approach achieved the best results for all the performance indicators, providing a mean precision value of 90.11%, a recall value of 86.20%, a F-measure value of 87.22%, and a MCC value of 0.87. The statistical analysis of the results shows that this approach significantly improves the results and increases the magnitude of the improvement. The promising results of this work can serve as a starting point toward the use of machine learning techniques in other engineering tasks with software models, such as traceability or bug location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://www.caf.net/en.

  2. https://www.bsh-group.com/.

  3. Learn more of TCML at: https://youtu.be/Ypcl2evEQB8.

  4. Learn more of IHDSL at: https://youtu.be/nS2sybEv6j0.

  5. https://www.gnu.org/software/grep/manual/grep.html.

References

  1. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability links between code and documentation. IEEE Trans. Softw. Eng. 28(10), 970–983 (2002)

    Google Scholar 

  2. Arcega, L., Font, J., Haugen, Ø., Cetina, C.: An approach for bug localization in models using two levels: model and metamodel. Softw. Syst. Model. 18, 3551–3576 (2019). https://doi.org/10.1007/s10270-019-00727-y

    Article  Google Scholar 

  3. Arcuri, A., Briand, L.: A Hitchhiker’s guide to statistical tests for assessing randomized algorithms in software engineering. Softw. Test. Verifi. Reliab. 24(3), 219–250 (2014)

  4. Arcuri, A., Fraser, G.: Parameter tuning or default values? An empirical investigation in search-based software engineering. Empir. Softw. Eng. 18(3), 594–623 (2013)

    Google Scholar 

  5. B. Le, T.D., Lo, D., Le Goues, C., Grunske, L.: A learning-to-rank based fault localization approach using likely invariants. In: Proceedings of the 25th International Symposium on Software Testing and Analysis, pp. 177–188. ACM, New York, USA (2016)

  6. Ballarín, M., Marcén, A.C., Pelechano, V., Cetina, C.: Measures to report the location problem of model fragment location. In: Proceedings of the 21th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, pp. 189–199. ACM, New York, USA (2018)

  7. Ballarín, M., Marcén, A.C., Pelechano, V., Cetina, C.: On the influence of model fragment properties on a machine learning-based approach for feature location. Inf. Softw. Technol. 129, 106,430 (2021)

    Google Scholar 

  8. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(Feb), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Beyranvand, P., Kucuktezcan, C.F., Cataltepe, Z., Genc, V.M.I.: A novel feature selection method for the dynamic security assessment of power systems based on multi-layer perceptrons. Int. J. Intell. Syst. Appl. Eng. 6(1), 53–58 (2018)

    Google Scholar 

  10. Bianchini, M., Maggini, M., Jain, L.C. (eds.): Handbook on Neural Information Processing, Intelligent Systems Reference Library, vol. 49, 1st edn. Springer, Verlag (2013)

  11. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)

    MATH  Google Scholar 

  12. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in practice. Synth. Lect. Softw. Eng. 3(1), 1–207 (2017)

    Google Scholar 

  13. Cai, J., Luo, J., Wang, S., Yang, S.: Feature selection in machine learning: a new perspective. Neurocomputing 300, 70–79 (2018)

    Google Scholar 

  14. Canuto, S.D., Belém, F.M., Almeida, J.M., Gonçalves, M.A.: A comparative study of learning-to-rank techniques for tag recommendation. J. Inf. Data Manag. 4(3), 453 (2013)

    Google Scholar 

  15. Cao, Z., Tian, Y., Le, T.D.B., Lo, D.: Rule-based specification mining leveraging Learning to Rank. Autom. Softw. Eng. 25(3), 501–530 (2018)

    Google Scholar 

  16. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)

    Google Scholar 

  17. Chochlov, M., English, M., Buckley, J.: A historical, textual analysis approach to feature location. Inf. Softw. Technol. 88, 110–126 (2017)

    Google Scholar 

  18. Conover, W.: Practical Nonparametric Statistics, 3rd edn., pp. 250–257. Wiley, New York (1999)

    Google Scholar 

  19. Corley, C.S., Damevski, K., Kraft, N.A.: Exploring the use of deep learning for feature location. In: 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 556–560. IEEE Computer Society, Washington, USA (2015)

  20. Cruz, D., Figueiredo, E., Martinez, J.: A literature review and comparison of three feature location techniques using ArgoUML-SPL. In: Proceedings of the 13th International Workshop on Variability Modelling of Software-Intensive Systems, p. 16. ACM (2019)

  21. Dang, V.: The Lemur Project - Wiki - RankLib. http://sourceforge.net/p/lemur/wiki/RankLib/ (2013). Accessed April 2017

  22. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Enhancing an artefact management system with traceability recovery features. In: Proceedings of the 20th IEEE International Conference on Software Maintenance, pp. 306–315. IEEE (2004)

  23. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Can information retrieval techniques effectively support traceability link recovery? In: 14th IEEE International Conference on Program Comprehension, pp. 307–316. IEEE (2006)

  24. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

    Google Scholar 

  25. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code: a taxonomy and survey. J. Softw. Evol. Process 25(1), 53–95 (2013)

    Google Scholar 

  26. DL4J: Deeplearning4j Suite Overview. https://deeplearning4j.konduit.ai/. Accessed 29 July 2021

  27. Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd edn. Wiley Publishing, Chichester (2007)

    Google Scholar 

  28. Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Feature location in model-based software product lines through a genetic algorithm. In: Proceedings of the 15th International Conference on Software Reuse: Bridging with Social-Awareness, pp. 39–54. Springer Verlag, Berlin (2016)

  29. Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Feature location in models through a genetic algorithm driven by information retrieval techniques. In: Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems, pp. 272–282 (2016)

  30. Frakes, W.B., Baeza-Yates, R.A. (eds.).: Information Retrieval: Data Structures and Algorithms, Prentice-Hall (1992)

  31. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4(Nov), 933–969 (2003)

    MathSciNet  MATH  Google Scholar 

  32. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180(10), 2044–2064 (2010)

    Google Scholar 

  33. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR.org (2010)

  34. Gu, X., Zhang, H., Kim, S.: Deep code search. In: 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), pp. 933–944. ACM, New York, USA (2018)

  35. Guo, J., Cheng, J., Cleland-Huang, J.: Semantically enhanced software traceability using deep learning techniques. In: 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), pp. 3–14. IEEE, IEEE Press Piscataway, New Jersey, USA (2017)

  36. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3(Mar), 1157–1182 (2003)

    MATH  Google Scholar 

  37. Haiduc, S., Bavota, G., Oliveto, R., De Lucia, A., Marcus, A.: Automatic query performance assessment during the retrieval of software artifacts. In: 2012 Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering, pp. 90–99. ACM, New York, USA (2012)

  38. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Berlin (2009)

    MATH  Google Scholar 

  39. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G.K., Svendsen, A.: Adding standardized variability to domain specific languages. In: 2008 12th International Software Product Line Conference, pp. 139–148. IEEE (2008)

  40. Haykin, S.: Neural Networks: a Comprehensive Foundation. Prentice Hall PTR, New Jersey (1994)

    MATH  Google Scholar 

  41. Ho-Quang, T., Chaudron, M.R., Samúelsson, I., Hjaltason, J., Karasneh, B., Osman, H.: Automatic classification of UML class diagrams from images. In: 2014 21st Asia-Pacific Software Engineering Conference, vol. 1, pp. 399–406. IEEE Computer Society, Washington, USA (2014)

  42. Holthusen, S., Wille, D., Legat, C., Beddig, S., Schaefer, I., Vogel-Heuser, B.: Family model mining for function block diagrams in automation software. In: 18th International Software Product Lines Conference, pp. 36–43. ACM, New York, USA (2014)

  43. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    MATH  Google Scholar 

  44. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical report, DTIC Document (1990)

  45. Kıraç, M.F., Aktemur, B., Sözer, H.: VISOR: a fast image processing pipeline with scaling and translation invariance for test oracle automation of visual output systems. J. Syst. Softw. 136, 266–277 (2018)

    Google Scholar 

  46. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: Advances in Neural Information Processing Systems, pp. 971–980. Curran Associates Inc., USA (2017)

  47. Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Discourse Process. 25(2–3), 259–284 (1998)

    Google Scholar 

  48. Lapeña, R., Font, J., Pastor, Ó., Cetina, C.: Analyzing the impact of natural language processing over feature location in models. ACM SIGPLAN Not. 52(12), 63–76 (2017)

    Google Scholar 

  49. Lapeña, R., Pérez, F., Cetina, C., Pastor, Ó.: Improving traceability links recovery in process models through an ontological expansion of requirements. In: International Conference on Advanced Information Systems Engineering, pp. 261–275. Springer Verlag, Berlin (2019)

  50. Lavesson, N., Davidsson, P.: Quantifying the impact of learning algorithm parameter tuning. In: Proceedings, The Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, July 16–20, 2006, Boston, Massachusetts, USA, vol. 6, pp. 395–400. AAAI Press, California, USA (2006)

  51. Lee, K., Kang, K.C., Lee, J.: Concepts and guidelines of feature modeling for product line software engineering. In: International Conference on Software Reuse, pp. 62–77. Springer Verlag, Berlin (2002)

  52. Leech, G., Garside, R., Bryant, M.: CLAWS4: the tagging of the British National Corpus. In: Proceedings of the 15th Conference on Computational Linguistics—Volume 1, pp. 622–628. Association for Computational Linguistics (1994)

  53. Li, C., Ji, L., Yan, J.: Acronym disambiguation using word embedding. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 4178–4179 (2015)

  54. Liu, D., Marcus, A., Poshyvanyk, D., Rajlich, V.: Feature location via information retrieval based filtering of a single scenario execution trace. In: Proceedings of the Twenty-Second IEEE/ACM International Conference on Automated Software Engineering, pp. 234–243. ACM, New York, NY, USA (2007)

  55. Lucia, A.D., Fasano, F., Oliveto, R., Tortora, G.: Recovering traceability links in software artifact management systems using information retrieval methods. ACM Trans. Softw. Eng. Methodol.: TOSEM 16(4), 13 (2007)

    Google Scholar 

  56. Lucia, D., et al.: Information retrieval models for recovering traceability links between code and documentation. In: Proceedings of the International Conference on Software Maintenance, pp. 40–49. IEEE (2000)

  57. Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  58. Marcén, A.C., Font, J., Pastor, O., Cetina, C.: Towards feature location in models through a Learning to Rank approach. In: Proceedings of the 21st International Systems and Software Product Line Conference, SPLC 2017, Volume B, Sevilla, Spain, September 25–29, 2017, pp. 57–64. AC, New York, USA (2017)

  59. Marcén, A.C., Lapeña, R., Pastor, Ó., Cetina, C.: Traceability link recovery between requirements and models using an evolutionary algorithm guided by a Learning to Rank algorithm: train control and management case. J. Syst. Softw. 163, 110519 (2020)

    Google Scholar 

  60. Marcén, A.C., Pérez, F., Cetina, C.: Ontological evolutionary encoding to bridge machine learning and conceptual models: approach and industrial evaluation. In: International Conference on Conceptual Modeling, pp. 491–505. Springer, New York, USA (2017)

  61. Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability links using latent semantic indexing. In: Proceedings of the 25th International Conference on Software Engineering, pp. 125–135. IEEE (2003)

  62. Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J.: An information retrieval approach to concept location in source code. In: Proceedings of the 11th Working Conference on Reverse Engineering, pp. 214–223 (2004). https://doi.org/10.1109/WCRE.2004.10

  63. Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Traon, Y.L.: Bottom-up adoption of software product lines: a generic and extensible approach. In: Proceedings of the 19th International Conference on Software Product Lines, pp. 101–110. ACM, New York, USA (2015)

  64. Martinez, J., Ziadi, T., Klein, J., Le Traon, Y.: Identifying and visualising commonality and variability in model variants. In: European Conference on Modelling Foundations and Applications, pp. 117–131. Springer (2014)

  65. Matthews, B.W.: Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim. Biophys. Acta (BBA) Protein Struct. 405(2), 442–451 (1975)

    Google Scholar 

  66. Meziane, F., Athanasakis, N., Ananiadou, S.: Generating natural language specifications from UML class diagrams. Requir. Eng. 13(1), 1–18 (2008)

    Google Scholar 

  67. Moreira, C., Calado, P., Martins, B.: Learning to rank experts in academic digital libraries. In: 15th Portuguese Conference on Artificial Intelligence, EPIA, Lisbon, Portugal (2011)

  68. Narawita, C.R., Vidanage, K.: UML generator-an automated system for model driven development. In: 2016 Sixteenth International Conference on Advances in ICT for Emerging Regions (ICTer), pp. 250–256. IEEE Computer Society, Washington, USA (2016)

  69. Nie, F., Zhu, W., Li, X.: Unsupervised feature selection with structured graph optimization. In: Thirtieth AAAI Conference on Artificial Intelligence, pp. 1302–1308. AAAI Press, California, USA (2016)

  70. Oliveto, R., Gethers, M., Poshyvanyk, D., De Lucia, A.: On the equivalence of information retrieval methods for automated traceability link recovery. In: 18th International Conference on Program Comprehension, pp. 68–71. IEEE (2010)

  71. Pérez, F., Lapeña, R., Font, J., Cetina, C.: Fragment retrieval on models for model maintenance: applying a multi-objective perspective to an industrial case study. Inf. Softw. Technol. 103, 188–201 (2018)

    Google Scholar 

  72. Poshyvanyk, D., Gueheneuc, Y.G., Marcus, A., Antoniol, G., Rajlich, V.: Feature location using probabilistic ranking of methods based on execution scenarios and information retrieval. IEEE Trans. Softw. Eng. 33(6), 420–432 (2007)

    Google Scholar 

  73. Potvin, C., Roff, D.A.: Distribution-free and robust statistical methods: viable alternatives to parametric statistics. Ecology 74(6), 1617–1628 (1993)

    Google Scholar 

  74. Qin, T., Liu, T.Y.: Introducing LETOR 4.0 datasets. Computing Research Repository (CoRR) arXiv:1306.2597 (2013)

  75. Qin, T., Liu, T.Y., Xu, J., Li, H.: LETOR: a benchmark collection for research on Learning to Rank for information retrieval. Inf. Retr. 13(4), 346–374 (2010)

    Google Scholar 

  76. Qin, T., Tao Qin, T.Y.L.: Microsoft Learning to Rank Datasets. https://www.microsoft.com/en-us/research/project/mslr/ (2010). Accessed 23 Jun 2019

  77. Rani, A.B., Kamal, A.N.B.: Text mining to concept mining: leads feature location in software system. In: 2018 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–7. IEEE (2018)

  78. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Liu, L., Tamer Özsu, M. (eds.) Encyclopedia of Database Systems, pp. 532–538. Springer, Berlin (2009)

  79. Rubin, J., Chechik, M.: A survey of feature location techniques. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.) Domain Engineering, pp. 29–58. Springer, Berlin (2013)

  80. Salman, H.E., Seriai, A., Dony, C.: Feature location in a collection of product variants: combining information retrieval and hierarchical clustering. In: The 26th International Conference on Software Engineering and Knowledge Engineering, pp. 426–430 (2014)

  81. Salton, G., McGill, M.: Introduction to Modern Information Retrieval, McGraw-Hill Book Company (1986)

  82. Shabtai, A., Moskovitch, R., Elovici, Y., Glezer, C.: Detection of malicious code by applying machine learning classifiers on static features: a state-of-the-art survey. Inf. Secur. Tech. Rep. 14(1), 16–29 (2009)

    Google Scholar 

  83. Song, Q., Jia, Z., Shepperd, M., Ying, S., Liu, J.: A general software defect-proneness prediction framework. IEEE Trans. Softw. Eng. 37(3), 356–370 (2011)

    Google Scholar 

  84. Spanoudakis, G., Zisman, A., Pérez-Minana, E., Krause, P.: Rule-based generation of requirements traceability relations. J. Syst. Softw. 72(2), 105–127 (2004)

    Google Scholar 

  85. Stikkolorum, D.R., Putten, P.V.D., Sperandio, C., Chaudron, M.: Towards automated grading of uml class diagrams with machine learning. In: BNAIC/BENELEARN (2019)

  86. Team, D., et al.: Deeplearning4j: open-source distributed deep learning for the JVM. Apache Softw. Found. License 2 (2016)

  87. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common language effect size statistics of Mcgraw and Wong. J. Educ. Behav. Stat. 25(2), 101–132 (2000)

    Google Scholar 

  88. Wang, J., Zhao, P., Hoi, S.C., Jin, R.: Online feature selection and its applications. IEEE Trans. Knowl. Data Eng. 26(3), 698–710 (2014)

    Google Scholar 

  89. Wille, D., Holthusen, S., Schulze, S., Schaefer, I.: Interface variability in family model mining. In: 17th International Software Product Line Conference, pp. 44–51. ACM, New York, USA (2013)

  90. Winkler, S., Pilgrim, J.: A survey of traceability in requirements engineering and model-driven development. Softw. Syst. Model.: SoSyM 9(4), 529–565 (2010)

    Google Scholar 

  91. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation in Software Engineering. Springer, Berlin (2012)

    MATH  Google Scholar 

  92. Zhang, X., Haugen, Ø., Møller-Pedersen, B.: Model comparison to synthesize a model-driven software product line. In: Proceedings of the 15th International Conference on Software Product Lines, pp. 90–99. IEEE Computer Society, Washington, USA (2011)

  93. Zhang, X., Haugen, Ø., Møller-Pedersen, B.: Augmenting product lines. In: 19th Asia-Pacific Software Engineering Conference, vol. 1, pp. 766–771. IEEE, New Jersey, USA (2012)

  94. Zheng, L., Wang, H., Gao, S.: Sentimental feature selection for sentiment analysis of chinese online reviews. Int. J. Mach. Learn. Cybern. 9(1), 75–84 (2018)

    Google Scholar 

  95. Zhou, Z.H., Feng, J.: Deep forest: towards an alternative to deep neural networks. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19–25, 2017, vol. 1, pp. 3553–3559. ijcai.org, Marina del Rey, California (2017)

Download references

Acknowledgements

This work has been developed with the financial support of the Spanish State Research Agency and the Generalitat Valenciana under the projects DataME TIN2016-80811-P, ALPS RTI2018-096411-B-I00, ACIF/2018/171, and PROMETEO/2018/176 and co-financed with ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. Marcén.

Additional information

Communicated by Nelly Bencomo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcén, A.C., Pérez, F., Pastor, Ó. et al. Enhancing software model encoding for feature location approaches based on machine learning techniques. Softw Syst Model 21, 399–433 (2022). https://doi.org/10.1007/s10270-021-00920-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10270-021-00920-y

Keywords

Navigation