Skip to main content
Log in

Robust portfolio asset allocation and risk measures

  • Invited Survey
  • Published:
4OR Aims and scope Submit manuscript

Abstract

Many financial optimization problems involve future values of security prices, interest rates and exchange rates which are not known in advance, but can only be forecast or estimated. Several methodologies have therefore, been proposed to handle the uncertainty in financial optimization problems. One such methodology is Robust Statistics, which addresses the problem of making estimates of the uncertain parameters that are insensitive to small variations. A different way to achieve robustness is provided by Robust Optimization which, given optimization problems with uncertain parameters, looks for solutions that will achieve good objective function values for the realization of these parameters in given uncertainty sets. Robust Optimization thus offers a vehicle to incorporate an estimation of uncertain parameters into the decision making process. This is true, for example, in portfolio asset allocation. Starting with the robust counterparts of the classical mean-variance and minimum-variance portfolio optimization problems, in this paper we review several mathematical models, and related algorithmic approaches, that have recently been proposed to address uncertainty in portfolio asset allocation, focusing on Robust Optimization methodology. We also give an overview of some of the computational results that have been obtained with the described approaches. In addition we analyse the relationship between the concepts of robustness and convex risk measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alizadeh F, Goldfarb D (2003) Second-order cone programming. Math Program 95(1): 3–51

    Article  Google Scholar 

  • Andersen ED, Andersen KD (2000) The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm. In: Frenk H, Roos K, Terlaky T, Zhang S (eds) High performance optimization. Kluwer, Dordrecht. pp 197–232. Code available from http://www.mosek.com/

  • Artzner P, Delbaen F, Eber J, Heath D (1999) Coherent measures of risk. Math Finance 9: 203–228

    Article  Google Scholar 

  • Ben Tal A, Bertsimas D, Brown DB (2009) A soft robust model for optimization under ambiguity. To appear in Oper Res

  • Bienstock D (2007) Histogram Models for Robust Portfolio Optimization. J Comput Finance 11(1)

  • Black F, Litterman R (1992) Global portfolio optimization. Financ Analysts J 48(5): 28–43

    Article  Google Scholar 

  • Broadie M (1993) Computing efficient frontiers using estimated parameters. Ann Oper Res 45: 21–58

    Article  Google Scholar 

  • Brown DB (2006) Risk and robust optimization. Ph.D. Dissertation, Massachusetts Institute of Technology

  • Byrd R, Hribar ME, Nocedal J (1999) An interior point method for large scale nonlinear programming. SIAM J Optim 9(4): 877–900

    Article  Google Scholar 

  • Cavadini F, Sbuelz A, Trojani F (2001) A simplified way of incorporating model risk, estimation risk and robustness in mean variance portfolio management. Working Paper

  • Chan LKC, Karceski J, Lakonishok J (1999) On portfolio optimization: forecasting covariances and choosing the risk model. Rev Financ Stud 12(5): 937–974

    Article  Google Scholar 

  • Chopra VK, Ziemba WT (1993) The effect of errors in means, variances, and covariances on optimal portfolio choices. J Portf Manag 19(2): 6–11

    Article  Google Scholar 

  • Danielsson J, Jorgensen BN, Samorodnitsky G, Sarma M, de Vries CG (2005) Subadditivity re-examined: the case for value-at-risk, FMG Discussion Papers dp549

  • DeMiguel V, Nogales FJ (2009) Portfolio selection with robust estimation. Oper Res 57(3): 560–577

    Article  Google Scholar 

  • Denneberg D (1994) Non-additive measure and integral. Kluwer, Boston

    Google Scholar 

  • Dhaene J, Laeven RJA, Vanduffel S, Darkiewicz G, Goovaerts MJ (2008) Can a coherent risk measure be too subadditive?. J Risk Insur 75(2): 365–386

    Article  Google Scholar 

  • Dhaene J, Vanduffel S, Tang Q, Goovaerts MJ, Kaas R, Vyncke D (2006) Risk measures and comonotonicity: a review. Stoch Models 22: 573–606

    Article  Google Scholar 

  • El Ghaoui L, Oks M, Oustry F (2003) Worst case value-at-risk and robust portfolio optimization: a conic programming approach. Oper Res 51(4): 543–556

    Article  Google Scholar 

  • Fabozzi FJ, Kolm PN, Pachamanova DA, Focardi SM (2007) Optimization and management. Wiley, New York

    Google Scholar 

  • Föllmer H, Schied A (2002) Convex measures of risk and trading constraints. Finance stoch 6: 429–447

    Article  Google Scholar 

  • Föllmer H, Schied A (2004) Stochastic finance: an introduction in discrete time. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Gaivoronski A, Pflug G. (2005) Value-at-risk in portfolio optimization: properties and computational approach. J Risk 7(2): 1–31

    Google Scholar 

  • Goh J, Sim M. ROME: Robust Optimization Made Easy. Version 1.0.4 (beta), available at http://robustopt.com/

  • Goldfarb D, Iyengar G (2003) Robust portfolio selection. Math Oper Res 28(1): 1–38

    Article  Google Scholar 

  • Halldórsson BV, Tütüncü RH (2003) An interior-point method for a class of saddle-point problems. J Optim Theory App 116(3): 559–590

    Article  Google Scholar 

  • Heyde CC, Kou SG, Peng XH (2006) What is a good risk measure: bridging the gaps between data, coherent risk measures, and insurance risk measures, Technical Report

  • Huber PJ (2004) Robust statistics. Wiley, New York

    Google Scholar 

  • Jagannathan R, Ma T (2003) Risk reduction in large portfolios: why imposing the wrong constraints help?. J Finance 58(4): 1651–1684

    Article  Google Scholar 

  • J.P. Morgan Inc: (1996) Risk metricsTM. Technical document, 4th edn. Morgan, New York

    Google Scholar 

  • Lauprete GJ, Samarov AM, Welsch RE (2002) Robust portfolio optimization. Metrica 25: 139–149

    Article  Google Scholar 

  • Lobo MS, Vandenberghe L, Boyd S, Lebret H (1998) Applications of second order cone programming. Linear Algebra Appl 284(1–3): 193–228

    Article  Google Scholar 

  • Markowitz H (1952) Portfolio selection. J Finance 7: 77–91

    Article  Google Scholar 

  • McNeil AJ, Frey R, Embrechts P (2005) Quantitative risk management: concepts, techniques, tools princeton series in finance. Princeton University Press, Princeton

    Google Scholar 

  • Mendes BVM, Leal CRP (2005) Robust multivariate modeling in finance. Int J Managerial Finance 1(2): 95–106

    Article  Google Scholar 

  • Michaud RO (1989) The Markowitz optimization enigma: is optimized optimal?. Finance Analysts J 45(1): 31–42

    Article  Google Scholar 

  • Natarajan K, Pachamanova D, Sim M (2008) Incorporating asymmetric distributional information in robust value at risk optimization. Manage sci 54(3): 573–585

    Article  Google Scholar 

  • Nesterov Y, Nemirovski A (1993) Interior-point polynomial algorithms in convex programming. SIAM, Philadelphia

    Google Scholar 

  • Nesterov Y, Nemirovski A (1994) Interior point polynomial methods in convex programming: theory and applications. SIAM, Philadelphia

    Google Scholar 

  • Perret-Gentil C, Victoria-Feser MP (2004) Robust mean-variance portfolio selection. FAME Research Paper 140. International Center for Financial Asset Management and Engineering, Geneva

  • Quaranta AG, Zaffaroni A (2008) Robust optimization of conditional value at risk and portfolio selection. J Banking Finance 32(10): 2046–2056

    Article  Google Scholar 

  • Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2(3): 21–41

    Google Scholar 

  • Rockafellar RT, Uryasev S (2002) Conditional value at risk for general loss distributions. J Banking Finance 26(7): 1443–1471

    Article  Google Scholar 

  • Saigal R, Vandenberghe L, Wolkowicz H (2000) Handbook on semidefinite programming and applications. Kluwer, Dordrecht

    Google Scholar 

  • Stürm J (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim methods softw 11–12: 625–653

    Article  Google Scholar 

  • Todd MJ (2001) Semidefinite optimization. Acta Numerica 10: 515–560

    Article  Google Scholar 

  • Tütüncü RH, Koenig M (2004) Robust asset allocation. Ann Oper Res 132: 157–187

    Article  Google Scholar 

  • Vandenberghe L, Boyd S (1996) Semidefinite programming. SIAM Rev 38: 49–95

    Article  Google Scholar 

  • Waltz RA (2004) KNITRO User’s Manual version 4.0. Ziena Optim, Evanston

    Google Scholar 

  • Wang S (1996) Premium calculation by transforming the layer premium density. ASTIN Bull 26: 71–92

    Article  Google Scholar 

  • Welsch RE, Zhou X (2007) Application of robust statistics to asset allocation models. Revstat Stat J 5(1): 97–114

    Google Scholar 

  • Yaari ME (1987) The dual theory of choice under risk. Econometrica 55: 95–115

    Article  Google Scholar 

  • Zhu SS, Fukushima M (2009) Worst-case conditional value at risk with application to robust portfolio management. Oper Res 57(5): 1155–1168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grazia Scutellà.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scutellà, M.G., Recchia, R. Robust portfolio asset allocation and risk measures. 4OR-Q J Oper Res 8, 113–139 (2010). https://doi.org/10.1007/s10288-010-0125-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10288-010-0125-9

Keywords

MSC classification (2000)

Navigation