Skip to main content
Log in

A review of brain-based neuro-cognitive models

  • Review
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

We present a survey of recent brain-based neural network models of various aspects of cognition, covering learning and episodic memory, working memory, attention control, goal formation, language learning and use and consciousness. These models are assessed in the light of their explanation of experimental data, as well as the possible help they have provided in understanding global cognitive processing principles. The paper concludes with a discussion of how the models discussed might help to guide the creation of an artificial cognitive brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178–1183

    Article  CAS  PubMed  Google Scholar 

  • Aleksander I (1996) Impossible minds. Imperial College Press, London

    Google Scholar 

  • Ariff G, Donchin O, Nanyakhara T, Shadmher R (2002) A real-time state predictor in motor control study of saccadic eye movements during unseen reaching movements. J Neurosci 22:7721–7729

    CAS  PubMed  Google Scholar 

  • Awh E et al (1996) Dissociation of storage and rehearsal in verbal working memory: evidence from positron emission tomography. Psychol Sci 7:25–31

    Google Scholar 

  • Baddeley A (1986) Working memory. Oxford University Press, Oxford

    Google Scholar 

  • Bi G-Q, Poo M-M (1998) Synaptic modification in cultured hippocampal neurons: dependence on spike timing, synaptic strength and postsynaptic cell type. J Neurosci 18:10464–10472

    CAS  PubMed  Google Scholar 

  • Binkofski F, Fink GR, Geyer S, Buccino G, Grfuber O, Shah NJ, Taylor JG, Seitz RJ, Zilles K, Freund H-J (2002) Neural activity in human motor cortex areas 4a and 4p is modulated differentially by attention to action. J Neurophys 88:514–519

    CAS  Google Scholar 

  • Blakemore SJ, Wolpert DM, Frith CD (1998) Central cancellation of self-produced tickle sensations. Nat Neurosci 1:635–640

    Article  CAS  PubMed  Google Scholar 

  • Botvinik MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict monitoring and cogitive selection for control. Psychol Rev 108:624–652

    Article  PubMed  Google Scholar 

  • Brown R (1973) A first language. Harvard University Press, Cambridge

    Google Scholar 

  • Brown JW, Bullock D, Grossberg S (2004) How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Netw 17:471–510

    Article  PubMed  Google Scholar 

  • Buechel C, Friston KJ (1997) Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb Cortex 7:768–778

    Article  PubMed  Google Scholar 

  • Chalmers D (1996) The conscious mind: towards a fundamental theory. Oxford University Press, Oxford

    Google Scholar 

  • Cohen JD, Servan-Schreiber D (1992) Context, cortex and dopamine: a connectionist approach to behaviour and biology in schizophrenia. Psychol Rev 99:45–77

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M (1998) Frontoparietal cortical networks for directing attention and the eye to visual locatios: identical, independent, or overlapping neural systems? Proc Natl Acad Sci U S A 95:831–838

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  CAS  PubMed  Google Scholar 

  • Corchs S, Deco G (2001) A neuro-dynamical model for the selective visual attention using oscillators. Neural Netw 14:981–990

    Article  CAS  PubMed  Google Scholar 

  • Coull JT (1998) Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol 55:343–361

    Article  CAS  PubMed  Google Scholar 

  • Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed to both PET and fMRI. J Neurosci 2:7426–7435

    Google Scholar 

  • Crick FHC (1994) The astonishing hypothesis. Simon and Schuster, London

    Google Scholar 

  • Crick FHC, Koch C (1990) Towards a neurobiological theory of consciousness. Semin Neurosci 2:263–275

    Google Scholar 

  • Crick FHC, Koch C (1998) Consciousness and neuroscience. Cereb Cortex 8:97–107

    Article  CAS  PubMed  Google Scholar 

  • Crick FHC, Koch C (2003) A framework for consciousness. Nat Neurosci 6:119–126

    Article  CAS  PubMed  Google Scholar 

  • Curtis CE, D’Esposito M (2003) Persistent activity in the prefrontal cortex during working memory. Trends Neurosci 7:415–423

    Google Scholar 

  • Deco G (1999) Biased competition mechanisms for visual attention in a multimodular neurodynamics system. In: Wermter S, Jim Austin J, Willshaw D (eds) Emergent neural computational architectures based on neuroscience. Springer, Berlin Heidelberg New York, pp 114–126

    Google Scholar 

  • Deco G, Rolls ET (2004) A neurodynamical cortical model of visual attention and invariant object recognition. Vision Res 44:621–642

    Article  PubMed  Google Scholar 

  • Dehaene S, Sergent C, Changeux J-P (2003) A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc Natl Acad Sci U S A 100:8520–8525

    Article  CAS  PubMed  Google Scholar 

  • Desmurget M, Grafton S (2000) Forward modelling allows feedback control for fast reaching movements. Trends Cogn Sci 4:423–431

    Article  PubMed  Google Scholar 

  • Duncan J, Ward R, Shapiro K (1994) Direct measurement of attentional dwell time in human vision. Nature 369:313–315.

    Article  CAS  PubMed  Google Scholar 

  • Edelman G (1992) Bright air, brilliant fire. Basic Books, New York

    Google Scholar 

  • Engel A (2004) Talk at the Neuromorphic Engineering Workshop, Genova

  • Fagg AH, Arbib MA (1998) Modeling parietal-premotor interactions in primate control of grasping. Neural Netw 11:1277–1303

    Article  PubMed  Google Scholar 

  • Fell J, Klaver P, Elger CE, Fernandez G (2002) Suppression of EEG gamma activity may cause the attentional blink. Conscious Cogn 11:114–122

    Article  PubMed  Google Scholar 

  • Fragopanagos N, Kockelkoren S, Taylor JG (2004) Modelling the attentional blink (submitted)

  • Freeman WJ (1975) Mass action in the nervous system. Academic Press, New York

    Google Scholar 

  • Freeman WJ (2000) Neurodynamics. Springer, London

    Google Scholar 

  • Froemke RC, Dan Y (2002) Spike-time-dependent synaptic modification induced by natural spike trains. Nature 416:433–438

    Article  CAS  PubMed  Google Scholar 

  • Fuster J-M (1997) The prefrontal cortex: anatomy, physiology and neuropsychology of the frontal lobes. Raven Press, New York

    Google Scholar 

  • Giteleman DR, Nobre AC, Parrish TB, LaBar KS, Kim Y-H, Meyer JR, Mesulam M-M (1999) A large-scale distributed network for covert spatial attention. Brain 122:1093–1106

    Article  PubMed  Google Scholar 

  • Goldman-Rakic PS (1996) Regional and cellular fractionation of working memory. Proc Natl Acad Sci U S A 93:13473–13480

    Article  CAS  PubMed  Google Scholar 

  • Grafman J (2002) In: Stuss DTH, Knight RT (eds) The frontal lobes. Oxford University Press, Oxford, pp 292–310

  • Gurney K, Prescott TJ, Redgrave P (2001a) A computational model of action selection in the basal ganglia II: analysis and simulation of behaviour. Biol Cybern 84:411–423

    CAS  PubMed  Google Scholar 

  • Gurney K, Prescott TJ, Redgrave P (2001b) A computational model of action selection in the basal ganglia I: a new functional anatomy. Biol Cybern 84:401–410

    CAS  PubMed  Google Scholar 

  • Hamker FH (2004) A dynamic model of how feature cues guide spatial attention. Vision Res 44:501–521

    Article  PubMed  Google Scholar 

  • Hartley M, Taylor N, Taylor JG (2004a) Modelling STDP: paired spikes, triplet spikes and sequence learning. In: BICS2004 Proceedings, Stirling, Scotland

  • Hartley M, Taylor N, Taylor JG (2004b) Deep sleep: understanding the process of hippocampal playback and plasticity. IJCNN2004, Budapest, Hungary

  • Hasselmo M, Schnell E, Barkai E (1995) Learning and recall at excitatory recurrent synapses and cholinergic modulation in hippocampal region CA3. J Neurosci 15:5249–5262

    CAS  PubMed  Google Scholar 

  • Hauser MD, Spelke E (2004) Evolutionary and developmental foundations of human knowledge. In: Gazzaniga M (ed) The cognitive neurosciences III (to appear)

  • Hebb DO (1949) The organization of behaviour. Wiley, New York

    Google Scholar 

  • Heinke D, Humphreys GW (2004) Computational models of visual selective attention: a review. In: Houghton G (ed) Connectionist models in psychology. Psychology Press (in press)

  • Heinke D, Deco G, Zihl J, Humphreys GW (2002) A computational neuroscience account of visual neglect. Neurocomput (44–46):811–818

    Article  Google Scholar 

  • Hopf J-M, Luck SJ, Girelli M, Hagner T, Mangun GR, Scheich H, Heinze H-J (2000) Neural sources of focussed attention in visual search. Cereb Cortex 10:1233–1241

    Article  CAS  PubMed  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A 79:2554–2558

    CAS  PubMed  Google Scholar 

  • Hopfinger JB, Buonocore MH, Mangun GR (2000) The neural mechanisms of top-down attentional control. Nat Neurosci 3:284–291

    Article  CAS  PubMed  Google Scholar 

  • Hopfinger JB, Woldorff MG, Fletcher EM, Mangun GR (2001) Dissociating top-down attentional control from selective perception and action. Neuropsychology 39:1277–1291

    Article  CAS  Google Scholar 

  • Houde O, Tzourio-Mazoyer N (2003) Neural foundations of logical and mathematical cognition. Nat Rev Neurosci 4:507–514

    Article  CAS  PubMed  Google Scholar 

  • Ioannides AA, Taylor JG (2003) Testing models of attention with MEG. IJCNN’03

  • Itti L, Koch C (1999) A saliency based search mechanism for overt and covert shifts of visual. In: Jacobs OLR (1993) An introduction to control theory. Oxford University Press, Oxford

  • Jackson SR, Marrocco R, Posner MI (1994) Networks of anatomical areas controlling visuospatial attention. Neural Netw 7:925–944

    Google Scholar 

  • Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341

    Article  CAS  PubMed  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory processing. Curr Opin Neurosci 9:718–727

    Article  CAS  Google Scholar 

  • Kim Y-H, Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Mesulam M-M (2000) The large-scale neural network for spatial attention displays. Neuroimage 9:269–277

    Article  Google Scholar 

  • Kimura F (2000) Cholinergic modulation of cortical function: a hypothetical role in shifting the dynamics in cortical networks. Neurosci Res 38:19–26

    Article  CAS  PubMed  Google Scholar 

  • Koch C, Ullman S (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol 4:219–227

    CAS  PubMed  Google Scholar 

  • Lee AK, Wilson MA (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36:1183–1194

    Article  CAS  PubMed  Google Scholar 

  • Levine J (1983) Materialism and qualia: the explanatory gap. Pac Philos Q 64:354–361

    Google Scholar 

  • Mack A, Rock I (1998) Inattentional blindness: perception without attention. In: Wright RD (ed) Visual attention. Oxford University Press, Oxford, pp 55–76

    Google Scholar 

  • McAdams CJ, Maunsell JHR (1999) Effects of attention on orienting-tuning functions of single neurons in macaque cortical area V4. J Neurosci 19:431–441

    CAS  PubMed  Google Scholar 

  • McClelland JL, Rumelhart DE (1981) An interactive activation model of context effects in letter perception I: an account of basic findings. Psychol Rev 88:375–407

    Article  Google Scholar 

  • Medina JF, Garcia KS, Mauk MD (2001) A mechanism for savings in the cerebellum. J Neurosci 21:4081–4089

    CAS  PubMed  Google Scholar 

  • Mehta AD, Ulbert I, Schroeder CE (2000) Intermodal selective attention in monkeys I and II. Cereb Cortex 10:343–370

    Article  CAS  PubMed  Google Scholar 

  • Mesulam M-M (1981) A cortical network for directed attention and unilateral neglect. Ann Neurol 10:309–325

    CAS  Google Scholar 

  • Miall RC, Wolpert D (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279

    Article  PubMed  Google Scholar 

  • Monchi O, Taylor JG, Dagher A (2000) A neural model of working memory processes in normal subjects, Parkinson’s disease and schizophrenia for fMRI design and predictions. Neural Netw 13:953–973

    Article  CAS  PubMed  Google Scholar 

  • Mozer MC, Sitton M (1999) Computational modeling of spatial attention. In: Pashler H (ed) Attention. Taylor and Francis, New York, pp 341–393

    Google Scholar 

  • Nagel T (1974) What is it like to be a bat? Philos Rev 83:434–450

    Google Scholar 

  • Nakazawa K, Sun LD, Quirk MC, Rondi-Reig L, Wilson MA, Tonegawa S (2003) Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience. Neuron 38:305–315

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama M et al (2000) Calcium stored regulate the polarity and input specificity of synaptic modification. Nature 408:584–588

    Article  CAS  PubMed  Google Scholar 

  • Ohyamam T, Nores WL, Murphy M, Mauk M (2003) What the cerebellum computes. Trends Neurosci 26:222–227

    Article  PubMed  Google Scholar 

  • Paulesu E, Frith CD, Frackowiak RSJ (1993) The neural correlates of the verbal component of working memory. Nature 362:342–345

    Article  CAS  PubMed  Google Scholar 

  • Perriot-Desilligny C, Rivaud S, Gaynard B, Muri R, Vermersch A-I (1995) Cortical control of saccades. Ann Neurol 37:557–567

    PubMed  Google Scholar 

  • Plaut DC, Shallice T (1993) Deep dyslexia: A case study of connectionist neuropsychology. Cogn Neurop 10:377–500

    Google Scholar 

  • Reynolds JH, Chelazzi L, Desimone R (1999) Competitive mechanisms subserve attention in macaque areas V2 and V4. J Neurosci 19:1736–1753

    CAS  PubMed  Google Scholar 

  • Riva D, Giorgi C (2000) The cerebellum contributes to higher functions during development. Brain 123:1051–1061

    PubMed  Google Scholar 

  • Rizzolatti G (1983) Mechanisms of selective attention in mammals. In: Ewert JP, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York

    Google Scholar 

  • Rizzolatti G, Riggion L, Sheliga BM (1994) Space and selective attention. In: Umilta C, Moscovitch M (eds) Attention and perfomance XV. MIT Press, Cambridge, MA, pp 231–265

    Google Scholar 

  • Robinson DL, Petersen SE (1992) The pulvinar and visual salience. Trends Neurosci 15:127–132

    Article  CAS  PubMed  Google Scholar 

  • Rohde DLT (2002) A connectionist model of sentence comprehension and production. OPhD Thesis CMU-CS-02-105, 2 March 2002. Computer Science Department, Carnegie Mellon University

  • Rolls ET, Treves A (1998) Neural networks and brain function. Oxford University press, Oxford

    Google Scholar 

  • Sabes (2000) The planning and control of reaching movements. Curr Opin Neurobiol 10:740–746

    Google Scholar 

  • Schweighofer N, Spoekstra J, Arbib M, Kawato M (1998) Role of the cerebellum in reaching movements in humans II: a neural model of the intermediate cerebellum. Eur J Neurosci 10:95–105

    Article  CAS  PubMed  Google Scholar 

  • Shapiro KL, Arnell KM, Raymond JE (1997) The attentional blink. Trends Cogn Sci 8:291–296

    Article  Google Scholar 

  • Shoemaker S (1984) Identity, cause and mind. Cambridge University Press, Cambridge

    Google Scholar 

  • Shouval HZ, Bear MF, Cooper LN (2003) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci U S A 99:10831–10836

    Article  Google Scholar 

  • Singer W, Gray CM(1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    Article  CAS  PubMed  Google Scholar 

  • Squire LR (1992) Memory and the hippocampus: a synthesis of findings with rats, monkeys and humans. Psychol Rev 99:195–231

    Article  CAS  PubMed  Google Scholar 

  • Stanley P, Taylor JG (2003) Lobal progress report: the semantic system and gist analyser. Lobal Rep (unpublished)

    Google Scholar 

  • Taylor JG (2000a) A general framework for functions of the brain. In: International Joint Conference on Neural Networks 2000. IEEE Press. ISBN# 0-7695-0619-4/00

  • Taylor JG (2000b) The central representation: the where, what and how of consciousness. In: Proceedings ‘The Emergence of Mind’, Milan, April 2000. Fondazione Carlo Erba, Milan

  • Taylor JG (2000c) Neuroscience Abstracts

  • Taylor JG (2001a) The importance of the parietal lobe for consciousness. Conscious Cogn 10:379–417

    Article  CAS  PubMed  Google Scholar 

  • Taylor JG (2001b) Attention as a neural control system. In: Proceedings of international joint conference on neural networks. (IJCNN’01), IEE Cat# 01CH37222C, ISBN# 0-07803-7046-5, pp 272–276

  • Taylor JG (2002a) Paying attention to consciousness. Trends Cogn Sci 6:206–210

    Article  PubMed  Google Scholar 

  • Taylor JG (2002b) From matter to mind. J Consci St 9:3–22

    Google Scholar 

  • Taylor JG (2002c) Toward global principles of brain processing. In: Hecht-Nielsen R, McKenna T (eds) Computational models for neuroscience. Springer, London, pp 221–244

    Google Scholar 

  • Taylor JG (2003) Paying attention to consciousness. Prog Neurobiol 41:305–335

    Article  Google Scholar 

  • Taylor JG (2004) Creating the CHIMERA Chip. In: IJCNN2004, Budapest, Hungary

  • Taylor JG, Alavi F (1995) A global competitive neural network. Biol Cybern 72:233–248

    Article  CAS  PubMed  Google Scholar 

  • Taylor JG, Kasderides S (2003) Living with the dangerous. KES’03 Conference, Oxford

  • Taylor NR, Taylor JG (1999) Modelling the frontal lobes in health and disease. In: Proc ICANN1999, Edinburgh, Scotland

  • Taylor NR, Taylor JG (2000) Hard-wired models of working memory and temporal sequence storage and generation. Neural Netw 13:201–224

    Article  CAS  PubMed  Google Scholar 

  • Taylor NR, Taylor JG (2003) Neural Networks/Biological Cybernetics/ACTION net web page at kcl.ac.uk

  • Taylor NR, Hartley M, Taylor JG (2004) The learning of insertions by the cerebellum. In: Proceedings of brain inspired ognitive systems conference, Stirling

  • Treue S, Maunsell JHH (1999) Effects of attention processing in macaque middle temporal and medial superior temporal visual cortical areas. J NeuroscI 19:7591–7603

    CAS  PubMed  Google Scholar 

  • Umeno MM, Goldberg ME (1997) Spatial processing in the monkey frontal eye field. I. predictive visual responses. J Neurophys 78:1373–1383

    CAS  Google Scholar 

  • Vidyasagar TR (1999) A neuronal model of attentional spotlight: parietal guiding the temporal. Brain Res Rev 30:66–76

    Article  CAS  PubMed  Google Scholar 

  • Vogel EK, Luck SJ, Shapiro K (1998) Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. J Exp Psychol 241:656–1674

    Google Scholar 

  • Vuilleumeir PO, Rafal RD (2000) A systematic study of visual extinction. Brain 123:1263–1279

    Article  PubMed  Google Scholar 

  • Wang X-J (1999) Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J Neurosci 19:9587–9603

    CAS  PubMed  Google Scholar 

  • Willingham DB (1998) A neuropsychological theory of motor skill learning. Psychol Rev 105:558–584

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Gharharmini Z (2000) Computational principles of movement neuroscience. Nat Neurosci Suppl 3:1212–1217

    Article  CAS  Google Scholar 

  • Wright RD (ed) (1998) Visual attention. Oxford University Press, Oxford

    Google Scholar 

  • Zahavi D (1999) Self-awareness and alterity. Northwestern University Press, Evanston

    Google Scholar 

  • Zipser D, Keehoe B, Littelwort G, Fuster J (1992) A spiking model of short-term active memory. J Neurosci 13:3408–3420

    Google Scholar 

Download references

Acknowledgements

The author would like to thank his younger colleagues Neill Taylor, Mathew Hartley and Nikolaos Fragopanagos of King’s College London and Stathis Kasderidis, now moved to FORTH, Crete, and Christo Panchev and Kaustubh Choksi of the University of Sunderland, for stimulating conversations and simulation studies as part of collaborative work. He would also like to thank the EC IST for its support under the ORESTEIA (attention agents) and ERMIS (emotion recognition systems) projects, where some of the above ideas were developed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, J.G. A review of brain-based neuro-cognitive models. Cogn Process 5, 199–217 (2004). https://doi.org/10.1007/s10339-004-0033-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-004-0033-z

Keywords

Navigation