Skip to main content

Advertisement

Log in

Sensorimotor representation and knowledge-based reasoning for spatial exploration and localisation

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

We investigate a hybrid system for autonomous exploration and navigation, and implement it in a virtual mobile agent, which operates in virtual spatial environments. The system is based on several distinguishing properties. The representation is not map-like, but based on sensorimotor features, i.e. on combinations of sensory features and motor actions. The system has a hybrid architecture, which integrates a bottom-up processing of sensorimotor features with a top-down, knowledge-based reasoning strategy. This strategy selects the optimal motor action in each step according to the principle of maximum information gain. Two sensorimotor levels with different behavioural granularity are implemented, a macro-level, which controls the movements of the agent in space, and a micro-level, which controls its eye movements. At each level, the same type of hybrid architecture and the same principle of information gain are used for sensorimotor control. The localisation performance of the system is tested with large sets of virtual rooms containing different mixtures of unique and non-unique objects. The results demonstrate that the system efficiently performs those exploratory motor actions that yield a maximum amount of information about the current environment. Localisation is typically achieved within a few steps. Furthermore, the computational complexity of the underlying computations is limited, and the system is robust with respect to minor variations in the spatial environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Attneave F (1954) Some informational aspects of visual perception. Psychol Rev 61(3):183–193

    Article  PubMed  CAS  Google Scholar 

  • Aloimonos Y (ed) (1992) Special issue: purposive, qualitative and active vision. Image understanding 56

  • Ballard DH (1991) Animate vision. Artif Intell 48:57–86

    Article  Google Scholar 

  • Basso D, Belardinelli MO (2006) The role of the feedforward paradigm in cognitive psychology. Cogn Process 7(2):73–88

    Article  PubMed  Google Scholar 

  • Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94(2):115–147

    Article  PubMed  CAS  Google Scholar 

  • Boella G (2002) Intentions: choice first, commitment follows. Proceedings of autonomous agents and multiagent systems (AAMAS), pp 1165–1166

  • Chernyak DA, Stark L (2001) Top-down guided eye movements. IEEE Trans Syst Man Cybern 31(4):514–522

    Article  CAS  Google Scholar 

  • DeSouza G, Kak A (2002) Vision for mobile robot navigation: a survey. IEEE Trans Syst Man Cybern 24(2):237–267

    Google Scholar 

  • Egner S (1997) Zur Rolle der Aufmerksamkeit fuer die Objekterkennung: Modellierung, Simulation, Empirie. PhD thesis, University of Hamburg

  • Elfes A (1987) Sonar-based real-world mapping and navigation. IEEE J Rob Automat 3(3):249–265

    Article  Google Scholar 

  • Foo P, Warren WH, Duchon A, Tarr MJ (2005) Do humans integrate routes into a cognitive map? Map- versus landmark-based navigation of novel shortcuts. J Exp Psychol 31(2):195–215

    Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Gillner S, Mallot HA (1998) Navigation and acquisition of spatial knowledge in a virtual maze. J Cogn Neurosci 10(4):445–463

    Article  PubMed  CAS  Google Scholar 

  • Gordon J, Shortliffe EH (1985) A method for managing evidential reasoning in a hierarchical hypothesis space. Artif Intell 26(3):323–357

    Article  Google Scholar 

  • Haigh KZ, Veloso M (1995) Route planning by analogy. Proc Int Conf Case Based Reason 95:160–180

    Google Scholar 

  • Hommel B, Muesseler J, Aschersleben G, Prinz W (2001) The theory of event coding (tec): a framework for perception and action planning. Behavior Brain Sci 24:849–878

    CAS  Google Scholar 

  • Itti L, Koch C (2001) Feature combination strategies for saliency-based visual attention systems. J Electron Imaging 10(1):161–169

    Article  Google Scholar 

  • Koch C, Ullman S (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol 4:219–227

    PubMed  CAS  Google Scholar 

  • Kortenkamp D, Weymouth T (1994) Topological mapping for mobile robots using a combination of sonar and vision sensing. Proc Natl Conf Artif Intell 12(2):979–984

    Google Scholar 

  • Kuipers B (1982) The “map in the head” metaphor. Environ Behav 14(2):202–220

    Article  Google Scholar 

  • Kuipers B, Byun YT (1991) A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. IEEE J Rob Auton Syst 8:47–63

    Article  Google Scholar 

  • Kuipers B (2000) The spatial semantic hierarchy. Artif Intell 119:191–233

    Article  Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86

    Article  Google Scholar 

  • Laeng B, Teodorescu DS (2002) Eye scanpaths during visual imagery reenact those of perception of the same visual scene. Cogn Sci 26:207–231

    Article  Google Scholar 

  • Locke EA, Latham GP (2002) Building a practically useful theory of goal setting and task motivation. A 35-year odyssey. Am Psychol 57(9):705–717

    Article  PubMed  Google Scholar 

  • Mackworth NH, Morandi AJ (1967) The gaze selects informative details within pictures. Percept Psychophys 2(11):547–552

    Google Scholar 

  • Mataric MJ (1992) Integration of representation into goal-driven behavior-based robots. IEEE Transact Rob Automat 8(3):304–312

    Article  Google Scholar 

  • Moore T (1999) Shape representations and visual guidance of saccadic eye movements. Sciences 285(5435):1914–1917

    CAS  Google Scholar 

  • Moorman K, Ram A (1992) A case-based approach to reactive control for autonomous robots. Proceedings of the AAAI Fall symposium on AI for real-world autonomous mobile robots

  • Moravec HP (1988) Sensor fusion in certainty grids for mobile robots. AI Mag 9(29):61–74

    Google Scholar 

  • Newman P, Ho K (2005) SLAM-loop closing with visually salient features. Proceedings of the 2005 IEEE international conference on robotics automation, pp 18–22

  • Noton D, Stark L (1971) Scan paths in saccadic eye movements while viewing and recognizing patterns. Vision Res 11:929–942

    Article  PubMed  CAS  Google Scholar 

  • Olshausen BA, Anderson CH, Van Essen DC (1993) A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J Neurosci 13(11):4700–4719

    PubMed  CAS  Google Scholar 

  • O’Regan JK, Noë A (2001) A sensorimotor account of vision and visual consciousness. Behavior Brain Sci 24:939–973

    Article  CAS  Google Scholar 

  • Prinz W (1990) A common coding approach to perception and action. In: Neumann O, Prinz W (eds) Relationships between perception and action: current approaches. Springer, Berlin, pp 167–203

    Google Scholar 

  • Rao RPN, Zelinsky GJ, Hayhoe MM, Ballard DH (1997) Eye movements in visual cognition: a computational study. Technical report 97.1, University of Rochester

  • Rybak IA, Golovan AV, Podladchikova LN, Shevtsova NA (1998) A model of attention-guided visual perception and recognition. Vision Res 38:2387–2400

    Article  PubMed  CAS  Google Scholar 

  • Schill K (1997) Decision support systems with adaptive reasoning strategies. In: Freksa C, Jantzen M, Valk R (eds) Lecture notes in computer science. Springer, Berlin, pp 417–427

    Google Scholar 

  • Schill K, Umkehrer E, Beinlich S, Krieger G, Zetzsche C (2001) Scene analysis with saccadic eye movements: top-down and bottom-up modeling. J Electron Imaging 10(1):152–160

    Article  Google Scholar 

  • Se S, Lowe D, Little J (2002) Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks. Int J Rob Res 21(8):735–758

    Article  Google Scholar 

  • Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton

    Google Scholar 

  • Shafer G, Logan R (1987) Implementing Dempster’s rule for hierarchical evidence. Artif Intell 33:272–298

    Article  Google Scholar 

  • Shapley R (2004) A new view of the primary visual cortex. Neural Netw 17(5–6):615–623

    Article  PubMed  Google Scholar 

  • Stachniss C, Grisetti G, Burgard W: (2005) Information gain-based exploration using Rao-Blackwellized particle filters. In: Proceedings of robotics, Cambridge, MA, USA, pp 65–72

  • Terzopoulos D, Rabie TF (1997) Animat vision: active vision in artificial animals. Videre: J Comput Vis Res 1(1):2–19

    Google Scholar 

  • Thrun S (2003) Robotic mapping: a survey. In: Lakemeyer G, Nebel B (eds) Exploring artificial intelligence in the New Millennium. Morgan Kaufmann, San Francisco, pp 1–35

    Google Scholar 

  • Tsotsos JK, Culhane S, Wai WYK, Lai Y, Davis N, Nuflo F (1995) Modelling visual attention via selective tuning. Artif Intell 78(1–2):507–547

    Article  Google Scholar 

  • Tversky B (1992) Distortions in cognitive maps. Geoforum 23(2):131–138

    Article  Google Scholar 

  • Wang RF, Spelke ES (2000) Updating egocentric representations in human navigation. Cognition 77:215–250

    Article  PubMed  CAS  Google Scholar 

  • Werner S, Krieg-Brückner B, Herrmann T (2000) In: Freksa C (ed) Modelling navigational knowledge by route graphs. Spatial cognition II: integrating abstract theories, empirical studies, formal methods, and practical applications. Springer, Berlin, pp 295–316

    Google Scholar 

  • Wiener JM, Mallot HA (2003) ‘Fine-to-coarse’ route planning and navigation in regionalized environments. Spat Cogn Comput 3(4):331–358

    Article  Google Scholar 

  • Wilson SW (1991): The animat path to AI. In: Meyer JA, Wilson S (eds) From animals to animats. MIT, Cambridge, pp 15–21

    Google Scholar 

  • Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3(Suppl.):1212–1217

    Article  PubMed  CAS  Google Scholar 

  • Yarbus AL (1967) Eye movements and vision. Plenum, New York

    Google Scholar 

  • Zetzsche C, Galbraith C, Wolter J, Schill K (2007) Navigation based on a sensorimotor representation: a virtual reality study. In: Rogowitz BE, Pappas TN, Daly S (eds) Proceedings of SPIE of human vision and electronic imaging XII, 6492

  • Zetzsche C, Krieger G (2001) Nonlinear mechanisms and higher-order statistics in biological vision and electronic image processing: review and perspectives. J Electron Imaging 10(1):56–99

    Article  Google Scholar 

  • Zetzsche C, Nuding U (2005) Nonlinear and higher-order approaches to the encoding of natural scenes. Netw: Comput Neural Syst 16(2–3):191–221

    Article  Google Scholar 

  • Zetzsche C, Hauske G (1989) Multiple channel model for the prediction of subjective image quality. Proc SPIE Hum Vision Visual Process Digit Disp 1077:209–216

    Google Scholar 

  • Zetzsche C, Schill K, Deubel H, Krieger G, Umkehrer E, Beinlich S (1998) Investigation of a sensorimotor system for saccadic scene analysis: an integrated approach. In: Pfeifer R, Blumberg B, Meyer JA, Wilson SW (eds) From animals to animates 5: Proceedings of the fifth international conference on the simulation of adaptive behavior. MIT, Cambridge, pp 120–126

    Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees and the editor for their helpful comments and their constructive criticism. Torben Gerkensmeyer helped in carrying out the simulations for the performance evaluation and Freek Stulp provided valuable information on feedforward models. This study has been supported by DFG (SFB TR 8 “Spatial Cognition” A5-[ActionSpace]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Schill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zetzsche, C., Wolter, J. & Schill, K. Sensorimotor representation and knowledge-based reasoning for spatial exploration and localisation. Cogn Process 9, 283–297 (2008). https://doi.org/10.1007/s10339-008-0214-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-008-0214-2

Keywords

Navigation