Skip to main content

Advertisement

Log in

Number is special: time, space, and number interact in a temporal reproduction task

  • Research Article
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Space, time, and number are among fundamental aspects of behavior and reasoning about the environment. Recent studies have shown that these dimensions highly interact with each other. To explain such interaction, two theories have been proposed: A Theory of Magnitude (ATOM), which posits the existence of a common magnitude system, and Conceptual Metaphor Theory (CMT), which proposes abstract domains such as time and number are mapped through more concrete domains such as space. The present study investigates the interaction of number, time and space in a single experimental paradigm using a temporal reproduction task with a visuospatial component. We also investigated whether mathematical education and continuous involvement with calculations and numbers change the processing precision related to number, time, and space. Two groups of students in mathematics (n = 28) and Persian literature (n = 28) participated in a time reproduction task. The stimuli included Arabic numbers 1, 2, 8, and 9, which were presented to the participants over short (300, 400, 500 ms) and long durations (1000, 1100, 1200 ms) on both sides (left and right) of the monitor. The interaction effect of spatialـnumerical and temporal-numerical was found to be significant. There was no overall time–space interaction, but the triple interaction effect between number, time, and space was significant suggesting the existence of a common representational system. This main result was slightly in line with recent proposed theories. Furthermore, the results showed that the main effect of group was not significant. In addition, we found that among the three factors (number, time, and space) the effect of number is more prominent, i.e., when number disappeared the interaction effect was not observed. The results also suggest that the nature of interactions between these factors is not influenced by cognitive and educational factors. The findings of the study are finally discussed in terms of symmetrical or asymmetrical cross-dimensional influences within the frameworks of ATOM and CMT theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bonato M, Zorzi M, Umiltà C (2012) When time is space: evidence for a mental time line. Neurosci Biobehav Rev 36(10):2257–2273

    PubMed  Google Scholar 

  • Boroditsky L (2000) Metaphoric structuring: understanding time through spatial metaphors. Cognition 75(1):1–28

    CAS  PubMed  Google Scholar 

  • Bottini R, Casasanto D (2010) Implicit spatial length modulates time estimates, but not vice versa. In: International conference on spatial cognition, Springer

  • Brannon EM, Roitman JD (2003) Nonverbal representations of time and number in animals and human infants

  • Brown SW (1985) Time perception and attention: the effects of prospective versus retrospective paradigms and task demands on perceived duration. Percept Psychophys 38(2):115–124

    CAS  PubMed  Google Scholar 

  • Brown SW (1997) Attentional resources in timing: interference effects in concurrent temporal and nontemporal working memory tasks. Percept Psychophys 59(7):1118–1140

    CAS  PubMed  Google Scholar 

  • Brozzoli C, Ishihara M, Göbel SM, Salemme R, Rossetti Y, Farnè A (2008) Touch perception reveals the dominance of spatial over digital representation of numbers. Proc Natl Acad Sci 105(14):5644–5648

    CAS  PubMed  Google Scholar 

  • Bueti D, Walsh V (2010) Memory for time distinguishes between perception and action. Perception 39(1):81–90

    PubMed  Google Scholar 

  • Bueti D, Bahrami B, Walsh V (2008a) Sensory and association cortex in time perception. J Cognit Neurosci 20(6):1054–1062

    Google Scholar 

  • Bueti D, Walsh V, Frith C, Rees G (2008b) Different brain circuits underlie time processing for action and perception. J Cognit Neurosci 20:204–214

    Google Scholar 

  • Buhusi CV, Meck WH (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 6(10):755

    CAS  PubMed  Google Scholar 

  • Burr DC, Ross J, Binda P, Morrone MC (2011) Saccades compress space, time, and number. Space, time and number in the brain. Elsevier, Amsterdam, pp 175–186

    Google Scholar 

  • Cantlon JF, Platt ML, Brannon EM (2009) Beyond the number domain. Trends Cognit Sci 13(2):83–91

    Google Scholar 

  • Cappelletti M, Freeman ED, Cipolotti L (2009) Dissociations and interactions between time, numerosity and space processing. Neuropsychologia 47(13):2732–2748

    PubMed  PubMed Central  Google Scholar 

  • Cappelletti M, Freeman ED, Cipolotti L (2011) Numbers and time doubly dissociate. Neuropsychologia 49(11):3078–3092

    PubMed  Google Scholar 

  • Casarotti M, Michielin M, Zorzi M, Umiltà C (2007) Temporal order judgment reveals how number magnitude affects visuospatial attention. Cognition 102(1):101–117

    PubMed  Google Scholar 

  • Casasanto D, Boroditsky L (2008) Time in the mind: using space to think about time. Cognition 106(2):579–593

    PubMed  Google Scholar 

  • Casasanto D, Fotakopoulou O, Boroditsky L (2010) Space and time in the child’s mind: evidence for a cross-dimensional asymmetry. Cognit Sci 34(3):387–405

    Google Scholar 

  • Chang AY-C, Tzeng OJ, Hung DL, Wu DH (2011) Big time is not always long: numerical magnitude automatically affects time reproduction. Psychol Sci 22(12):1567–1573

    PubMed  Google Scholar 

  • Conson M, Cinque F, Barbarulo AM, Trojano L (2008) A common processing system for duration, order and spatial information: evidence from a time estimation task. Exp Brain Res 187(2):267–274

    PubMed  Google Scholar 

  • Coull JT, Charras P, Donadieu M, Droit-Volet S, Vidal F (2015) SMA selectively codes the active accumulation of temporal, not spatial, magnitude. J Cognit Neurosci 27(11):2281–2298

    Google Scholar 

  • Dehaene S (2011) The number sense: how the mind creates mathematics, OUP USA

  • Dehaene S, Bossini S, Giraux P (1993) The mental representation of parity and number magnitude. J Exp Psychol Gen 122(3):371

    Google Scholar 

  • Dehaene S, Dehaene-Lambertz G, Cohen L (1998) Abstract representations of numbers in the animal and human brain. Trends Neurosci 21(8):355–361

    CAS  PubMed  Google Scholar 

  • DeLong AJ (1981) Phenomenological space-time: toward an experiential relativity. Science 213(4508):681–683

    CAS  PubMed  Google Scholar 

  • Dormal Andres VM, Pesenti M (2008) Dissociation of numerosity and duration processing in the left intraparietal sulcus: a transcranial magnetic stimulation study. Cortex 44(4):462–469

    PubMed  Google Scholar 

  • Dormal V, Dormal G, Joassin F, Pesenti M (2012a) A common right fronto-parietal network for numerosity and duration processing: an fMRI study. Hum Brain Mapp 33(6):1490–1501

    PubMed  Google Scholar 

  • Dormal V, Grade S, Mormont E, Pesenti M (2012b) Dissociation between numerosity and duration processing in aging and early Parkinson’s disease. Neuropsychologia 50(9):2365–2370

    PubMed  Google Scholar 

  • Droit-Volet S (2010) Speeding up a master clock common to time, number and length? Behav Proc 85(2):126–134

    Google Scholar 

  • Fabbri M, Cancellieri J, Natale V (2012) The a theory of magnitude (ATOM) model in temporal perception and reproduction tasks. Acta Physiol (Oxf) 139(1):111–123

    Google Scholar 

  • Fabbri M, Cellini N, Martoni M, Tonetti L, Natale V (2013a) The mechanisms of space-time association: comparing motor and perceptual contributions in time reproduction. Cognit Science 37(7):1228–1250

    Google Scholar 

  • Fabbri M, Cellini N, Martoni M, Tonetti L, Natale V (2013b) Perceptual and motor congruency effects in time–space association. Atten Percept Psychophys 75(8):1840–1851

    PubMed  Google Scholar 

  • Feigenson L (2007) The equality of quantity. Trends Cognit Sci 11(5):185–187

    Google Scholar 

  • Fischer MH, Mills RA, Shaki S (2010) How to cook a SNARC: number placement in text rapidly changes spatial-numerical associations. Brain Cognit 72(3):333–336

    Google Scholar 

  • Fuhrman O, Boroditsky L (2007) Mental time-lines follow writing direction: comparing english and hebrew speakers. In: Proceedings of the annual meeting of the cognitive science society

  • Gallistel CR, Gelman R (2000) Non-verbal numerical cognition: from reals to integers. Trends Cognit Sci 4(2):59–65

    CAS  Google Scholar 

  • Galton F (1880) Visualised numerals. Nature Publishing Group, Berlin

    Google Scholar 

  • Gazzaniga M (2000) The new cognitive neurosciences. MIT Press, Cambridge

    Google Scholar 

  • Gevers W, Lammertyn J, Notebaert W, Verguts T, Fias W (2006) Automatic response activation of implicit spatial information: evidence from the SNARC effect. Acta Physiol (Oxf) 122(3):221–233

    Google Scholar 

  • Gibbs RW Jr (2005) Embodiment and cognitive science. Cambridge University Press, Cambridge

    Google Scholar 

  • Gijssels T, Bottini R, Rueschemeyer S-A, Casasanto D (2013) Space and time in the parietal cortex: fMRI evidence for a meural asymmetry. In: The 35th annual meeting of the cognitive science society (CogSci 2013), Cognitive Science Society

  • Grondin S (2005) Overloading temporal memory. J Exp Psychol Hum Percept Perform 31(5):869–879

    PubMed  Google Scholar 

  • Gunderson EA, Ramirez G, Beilock SL, Levine SC (2012) The relation between spatial skill and early number knowledge: the role of the linear number line. Dev Psychol 48(5):1229

    PubMed  Google Scholar 

  • Halberda J, Mazzocco MM, Feigenson L (2008) Individual differences in non-verbal number acuity correlate with maths achievement. Nature 455(7213):665

    CAS  PubMed  Google Scholar 

  • Heinemann A, Pfister R, Janczyk M (2013) Manipulating number generation: loud + long = large? Conscious Cognit 22(4):1332–1339

    Google Scholar 

  • Herrera A, Macizo P, Semenza C (2008) The role of working memory in the association between number magnitude and space. Acta Physiol (Oxf) 128(2):225–237

    Google Scholar 

  • Hinton SC, Harrington DL, Binder JR, Durgerian S, Rao SM (2004) Neural systems supporting timing and chronometric counting: an FMRI study. Cogn Brain Res 21(2):183–192

    Google Scholar 

  • Holmes KJ (2012) Orienting numbers in mental space: horizontal organization trumps vertical. Q J Exp Psychol 65(6):1044–1051

    Google Scholar 

  • Ishihara M, Keller PE, Rossetti Y, Prinz W (2008) Horizontal spatial representations of time: evidence for the STEARC effect. Cortex 44(4):454–461

    PubMed  Google Scholar 

  • Jaffe K, Mascitti G, Seguias D (2012) Gender differences in time perception and its relation with academic performance: non-linear dynamics in the formation of cognitive systems. arXiv preprint arXiv:1203.3954

  • Jones LA, Wearden J (2004) Double standards: memory loading in temporal reference memory. Q J Exp Psychol Sect B 57(1):55–77

    Google Scholar 

  • Kiesel A, Vierck E (2009) SNARC-like congruency based on number magnitude and response duration. J Exp Psychol Learn Mem Cognit 35(1):275

    Google Scholar 

  • Klapproth F (2009) Single-modality memory mixing in temporal generalization: an effect due to instructional ambiguity. NeuroQuantology 7(1)

  • Kramer P, Bressan P, Grassi M (2011) Time estimation predicts mathematical intelligence. PLoS ONE 6(12):e28621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lakoff G, Johnson M (2008) Metaphors we live by, University of Chicago press

  • Lakoff G, Johnson M (1999) Philosophy in the flesh. Basic books, New york

    Google Scholar 

  • Lakoff G, Núñez RE (2000) Where mathematics comes from: how the embodied mind brings mathematics into being. AMC 10(12):720–733

    Google Scholar 

  • Lambrechts A, Walsh V, van Wassenhove V (2013) Evidence accumulation in the magnitude system. PLoS ONE 8(12):e82122

    PubMed  PubMed Central  Google Scholar 

  • LeFevre JA, Fast L, Skwarchuk SL, Smith-Chant BL, Bisanz J, Kamawar D, Penner-Wilger M (2010) Pathways to mathematics: longitudinal predictors of performance. Child Dev 81(6):1753–1767

    PubMed  Google Scholar 

  • Lejeune H, Wearden JH (2009) Vierordt’s the experimental study of the time sense (1868) and its legacy. Eur J Cognit Psychol 21(6):941–960

    Google Scholar 

  • Leon MI, Shadlen MN (2003) Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38(2):317–327

    CAS  PubMed  Google Scholar 

  • Lewis PA, Miall RC (2006) Remembering the time: a continuous clock. Trends Cognit Sci 10(9):401–406

    Google Scholar 

  • Liu X, Wang H, Corbly CR, Zhang J, Joseph JE (2006) The involvement of the inferior parietal cortex in the numerical Stroop effect and the distance effect in a two-digit number comparison task. J Cognit Neurosci 18(9):1518–1530

    Google Scholar 

  • Lourenco SF, Longo MR (2011) Origins and development of generalized magnitude representation. Space time and number in the brain. Elsevier, Amsterdam, pp 225–244

    Google Scholar 

  • Lu A, Hodges B, Zhang J, Zhang JX (2009) Contextual effects on number–time interaction. Cognition 113(1):117–122

    PubMed  Google Scholar 

  • Marghetis T, Youngstrom K (2014) Pierced by the number line: integers are associated with back-to-front sagittal space. In: Proceedings of the annual meeting of the cognitive science society

  • Martin B, Wiener M, van Wassenhove V (2017) A Bayesian perspective on accumulation in the magnitude system. Sci Rep 7(1):630

    PubMed  PubMed Central  Google Scholar 

  • Matlock T, Holmes KJ, Srinivasan M, Ramscar M (2011) Even abstract motion influences the understanding of time. Metaphor Symb 26(4):260–271

    Google Scholar 

  • Meck WH, Church RM (1983) A mode control model of counting and timing processes. J Exp Psychol Anim Behav Process 9(3):320

    CAS  PubMed  Google Scholar 

  • Merritt DJ, Casasanto D, Brannon EM (2010) Do monkeys think in metaphors? Representations of space and time in monkeys and humans. Cognition 117(2):191–202

    PubMed  PubMed Central  Google Scholar 

  • Moyer RS, Landauer TK (1967) Time required for judgements of numerical inequality. Nature 215(5109):1519–1520

    CAS  PubMed  Google Scholar 

  • Müller D, Schwarz W (2008) “1-2-3”: is there a temporal number line? Evidence from a serial comparison task. Exp Psychol 55(3):143–150

    PubMed  Google Scholar 

  • Nazari MA, Sabouri Moghaddam H, Poursharifi H, Bayrami M, Jahan A (2015) Interaction of numbers and spatial attention in Iranian people. J Res Rehabilit Sci [Persian] 10(6):819–832

    Google Scholar 

  • Nazari MA, Caria A, Soltanlou M (2017) Time for action versus action in time: time estimation differs between motor preparation and execution. J Cognit Psychol 29(2):129–136

    Google Scholar 

  • Nishida SY, Johnston A (2002) Marker correspondence, not processing latency, determines temporal binding of visual attributes. Curr Biol 12(5):359–368

    CAS  PubMed  Google Scholar 

  • Odic D (2018) Children’s intuitive sense of number develops independently of their perception of area, density, length, and time. Dev Sci 21(2):e12533

    Google Scholar 

  • Ogden RS, Wearden J, Jones LA (2008) The remembrance of times past: interference in temporal reference memory. J Exp Psychol Hum Percept Perform 34(6):1524

    PubMed  Google Scholar 

  • Oliveri M, Vicario CM, Salerno S, Koch G, Turriziani P, Mangano R, Chillemi G, Caltagirone C (2008) Perceiving numbers alters time perception. Neurosci Lett 438(3):308–311

    CAS  PubMed  Google Scholar 

  • Pecher D, Boot I (2011) Numbers in space: differences between concrete and abstract situations. Front Psychol 2:121

    PubMed  PubMed Central  Google Scholar 

  • Perbal S, Pouthas V, Van der Linden M (2000) Time estimation and amnesia: a case study. Neurocase 6(4):347–356

    Google Scholar 

  • Piazza M, Facoetti A, Trussardi AN, Berteletti I, Conte S, Lucangeli D, Dehaene S, Zorzi M (2010) Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition 116(1):33–41

    PubMed  Google Scholar 

  • Pouthas V, Perbal S (2004) Time perception depends on accurate clock mechanisms as well as unimpaired attention and memory processes. Acta Neurobiol Exp 64(3):367–386

    Google Scholar 

  • Schneider M, Grabner RH, Paetsch J (2009) Mental number line, number line estimation, and mathematical achievement: their interrelations in grades 5 and 6. J Educ Psychol 101(2):359

    Google Scholar 

  • Sell AJ, Kaschak MP (2012) The comprehension of sentences involving quantity information affects responses on the up–down axis. Psychon Bull Rev 19(4):708–714

    PubMed  PubMed Central  Google Scholar 

  • Shaki S, Fischer MH (2008) Reading space into numbers: a cross-linguistic comparison of the SNARC effect. Cognition 108(2):590–599

    PubMed  Google Scholar 

  • Shaki S, Fischer MH, Petrusic WM (2009) Reading habits for both words and numbers contribute to the SNARC effect. Psychon Bull Rev 16(2):328–331

    PubMed  Google Scholar 

  • Skagerlund K, Träff U (2014) Development of magnitude processing in children with developmental dyscalculia: space, time, and number. Front Psychol 5:675

    PubMed  PubMed Central  Google Scholar 

  • Turconi E, Campbell JI, Seron X (2006) Numerical order and quantity processing in number comparison. Cognition 98(3):273–285

    PubMed  Google Scholar 

  • Vicario CM, Caltagirone C, Oliveri M (2007) Optokinetic stimulation affects temporal estimation in healthy humans. Brain Cogn 64(1):68–73

    PubMed  Google Scholar 

  • Vicario CM, Pecoraro P, Turriziani P, Koch G, Caltagirone C, Oliveri M (2008) Relativistic compression and expansion of experiential time in the left and right space. PLoS ONE 3(3):e1716

    PubMed  PubMed Central  Google Scholar 

  • Vicario CM, Pavone EF, Martino D, Fuggetta G (2011) Lateral head turning affects temporal memory. Percept Mot Skills 113(1):3–10

    PubMed  Google Scholar 

  • Vicario CM, Rappo G, Pepi A, Pavan A, Martino D (2012) Temporal abnormalities in children with developmental dyscalculia. Dev Neuropsychol 37(7):636–652

    PubMed  Google Scholar 

  • Walsh V (2003) A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cognit Sci 7(11):483–488

    Google Scholar 

  • Walsh V (2015) A theory of magnitude: the parts that sum to number. In: The oxford handbook of numerical cognition, pp 552–565

  • Winter B, Perlman M, Matlock T (2013) Using space to talk and gesture about numbers: evidence from the TV News Archive. Gesture 13(3):377–408

    Google Scholar 

  • Xuan B, Zhang D, He S, Chen X (2007) Larger stimuli are judged to last longer. J Vis 7(10):2–2

    PubMed  Google Scholar 

  • Yamamoto K, Sasaki K, Watanabe K (2016) The number–time interaction depends on relative magnitude in the suprasecond range. Cogn Process 17(1):59–65

    PubMed  Google Scholar 

  • Zebian S (2005) Linkages between number concepts, spatial thinking, and directionality of writing: the SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. J Cognit Culture 5(1):165–190

    Google Scholar 

  • Zhang X, Koponen T, Räsänen P, Aunola K, Lerkkanen MK, Nurmi JE (2014) Linguistic and spatial skills predict early arithmetic development via counting sequence knowledge. Child Dev 85(3):1091–1107

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ali Jahan for assistance in task creation and all participants who took part in the experiment.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. This paper is extracted from MA dissertation of the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Nazari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Martin H. Fischer (University of Potsdam).

Reviewers: Marco Fabbri (University of Campania Luigi Vanvitelli) and the handling editor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nourouzi Mehlabani, S., Sabaghypour, S. & Nazari, M.A. Number is special: time, space, and number interact in a temporal reproduction task. Cogn Process 21, 449–459 (2020). https://doi.org/10.1007/s10339-020-00968-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-020-00968-6

Keywords

Navigation