Skip to main content
Log in

A new wavelet preconditioner for finite difference operators

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper is devoted to the construction of a new multilevel preconditioner for operators discretized using finite differences. It uses the basic ingredients of a multiscale construction of the inverse of a variable coefficient elliptic differential operator derived by Tchamitchian [19]. It can be implemented fast and can therefore be easily incorporated in finite difference solvers for elliptic PDEs. Theoretical results, as well as numerical tests and implementation technical details are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Angot, C.H. Bruneau and P. Fabrie, A penalization method to take into account obstacles in incompressible flows, Numer. Math. 81(4) (1999) 497–520.

    Google Scholar 

  2. G. Beylkin, On factored FIR approximation of IIR filters, Preprint, University of Boulder, Colorado.

  3. J.H. Bramble, J.E. Pasciak and J. Xu, Parallel multilevel preconditioned, Math. Comp. 55 (1990) 1–22.

    Google Scholar 

  4. C. Chui, An Introduction to Wavelets (Academic Press, Boston, 1992).

    Google Scholar 

  5. W. Dahmen and A. Kunoth, Multilevel preconditioning, Numer. Math. 63 (1992) 315–344.

    MathSciNet  Google Scholar 

  6. A. Harten, Discrete multiresolution analysis and generalysed wavelets, J. Appl. Numer. Math. 12 (1993) 153–192.

    Google Scholar 

  7. S. Jaffard, Wavelet methods for fast resolution of elliptic problems, SIAM J. Numer. Anal. 29 (1992) 965–986.

    Google Scholar 

  8. K. Khadra, S. Perneix, P. Angot and J.P. Caltagirone, Fictitious domain approach for numerical modeling of Navier–Stockes equation, Internat. J. Numer. Methods Fluids (1997).

  9. A. Kunoth, A.-S. Piquemal and J. Vorloeper, Multilevel preconditioners for discretizations of elliptic boundary value problems – experiences with different software packages, IGPM Preprint 194 (July 2000).

  10. S. Lazaar, Algorithmes à base d’ondelettes et résolution numériques de problèmes elliptiques à coefficients variables (in French), Ph.D. thesis, University of Aix-Marseille II (1995).

  11. S. Lazaar, J. Liandrat and P. Tchamitchian, Algorithmes à base d’ondelettes pour la résolution numérique d’équations aux dérivées partielles à coefficients variables (in French), C. R. Acad. Sci. Ser. I 319 (1994) 1101–1107.

    Google Scholar 

  12. S. Mallat, Multi-resolution approximation and wavelets, Trans. Amer. Math. Soc. 315 (1989) 65–88.

    Google Scholar 

  13. R. Masson, Méthodes d’ondelettes en simulation numérique pour les problèmes elliptiques et de point de selle (in French), Ph.D. thesis, University of Paris VI (1999).

  14. Y. Meyer, Ondelettes et Opérateurs II, Opérateurs de Calderon–Zygmund (Hermann, Paris, 1990).

    Google Scholar 

  15. A.S. Piquemal, Préconditionnements multiniveaux en ondelettes d’opérateurs elliptiques à coefficients variables discrétisés en différences finies (in French), Ph.D. thesis, University of Aix-Marseille II (2001).

  16. P.J. Ponenti, Algorithmes en ondelettes pour la résolution d’équations aux dérivées partielles (in French), Ph.D. thesis, University of Aix-Marseille II (1994).

  17. P.J. Ponenti and J. Liandrat, Numerical algorithms based on biorthogonal wavelets, ICASE Report 96-13 (1996).

  18. P.A. Raviart and J.M. Thomas, Introduction à l’Analyse Numérique des Équations aux Dérivées Partielles (Masson, Paris, 1988).

    Google Scholar 

  19. P. Tchamitchian, Inversion de certains opérateurs elliptiques à coefficients variables, SIAM J. Math. Anal. 27 (1996) 1680–1703.

    Google Scholar 

  20. J. Xu, Theory of multilevel methods, Ph.D. thesis, Cornell University (1989).

  21. H. Yserentant, On the multilevel splitting of finite element spaces, Numer. Math. 49 (1986) 379–412.

    Google Scholar 

  22. H. Yserentant, Two preconditioners based on the multilevel splitting of finite element spaces, Numer. Math. 58 (1990) 163–184.

    Google Scholar 

  23. H. Yserentant, Hierarchical basis, in: ICIAM ‘91, 1992.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Sophie Piquemal.

Additional information

Communicated by Y. Xu

This work has been partially supported by TMR Research Network Contract FMRX-CT98-0184.

AMS subject classification

00A69, 65T60, 65Y99, 15A12

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piquemal, AS., Liandrat, J. A new wavelet preconditioner for finite difference operators. Adv Comput Math 22, 125–163 (2005). https://doi.org/10.1007/s10444-004-1111-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-1111-6

Keywords

Navigation