Skip to main content
Log in

Mixed methods for fourth-order elliptic and parabolic problems using radial basis functions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

By extending Wendland’s meshless Galerkin methods using RBFs, we develop mixed methods for solving fourth-order elliptic and parabolic problems by using RBFs. Similar error estimates as classical mixed finite element methods are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.N. Atluri and S. Shen, The Meshless Local Petrov–Galerkin (MLPG) Method (Tech Science Press, Encino, CA, 2002).

    MATH  Google Scholar 

  2. J.W. Barrett and J.F. Blowey, Finite element approximation of the Cahn–Hilliard equation with concentration dependent mobility, Math. Comp. 68 (1999) 487–517.

    MATH  MathSciNet  Google Scholar 

  3. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl, Meshless methods: An overview and recent developments, Comput. Methods Appl. Mech. Engrg. 139 (1996) 3–47.

    MATH  Google Scholar 

  4. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods (Springer, Berlin, 1994).

    MATH  Google Scholar 

  5. M.D. Buhmann, Radial basis functions, Acta Numerica 9 (2000) 1–38.

    MathSciNet  Google Scholar 

  6. G. Fairweather, Finite Element Galerkin Methods for Differential Equations (Marcel Dekker, New York, 1978).

    MATH  Google Scholar 

  7. G.E. Fassauer, Solving partial differential equation by collocation with radial basis functions, in: Proc. of Chamonix, eds. A. LeMehaute, C. Rabut and L. Schumaker (Vanderbilt Univ. Press, Nashville, TN, 1997) pp. 131–138.

    Google Scholar 

  8. C. Franke and R. Schaback, Convergence order estimates of meshless collocation methods using radial basis functions, Adv. Comput. Math. 8 (1998) 381–399.

    MATH  MathSciNet  Google Scholar 

  9. M.A. Golberg and C.S. Chen, Discrete Projection Methods for Integral Equations (Computational Mechanics Publications, Southampton, 1997).

    Google Scholar 

  10. M. Griebel and M.A. Schweitzer, eds., Meshfree Methods for Partial Differential Equations (Springer, Berlin, 2003).

    Google Scholar 

  11. Y.C. Hon, K.F. Cheung, X.Z. Mao and E.J. Kansa, Multiquadric solution for shallow water equations, ASCE J. Hydraulic Engrg. 125 (1999) 524–533.

    Google Scholar 

  12. Y.C. Hon, M.W. Lu, W.M. Xue and Y.M. Zhu, Multiquadric method for the numerical solution of a biphasic mixture model, Appl. Math. Comput. 88 (1997) 153–175.

    MATH  MathSciNet  Google Scholar 

  13. Y.C. Hon and X.Z. Mao An efficient numerical scheme for Burgers’ equation, Appl. Math. Comput. 95 (1998) 37–50.

    MATH  MathSciNet  Google Scholar 

  14. Y.C. Hon and X.Z. Mao A radial basis function method for solving options pricing model, Financial Engrg. 8 (1999) 31–49.

    Google Scholar 

  15. Y.C. Hon and Z. Wu Additive Schwarz domain decomposition with radial basis approximation, Internat. J. Appl. Math. 4 (2000) 81–98.

    MATH  MathSciNet  Google Scholar 

  16. E. Kansa and Y.C. Hon, eds., Radial basis functions and partial differential equations, Comput. Math. Appl. 43 (2002) 275–619.

    MATH  MathSciNet  Google Scholar 

  17. J. Li, Full-order convergence of a mixed finite element method for fourth-order elliptic equations, J. Math. Anal. Appl. 230 (1999) 329–349.

    MATH  MathSciNet  Google Scholar 

  18. J. Li, C.S. Chen, D. Pepper and Y. Chen, Mesh-free method for groundwater modeling, in: Proc. of 24th World Conf. on Boundary Element Methods Incorporating Meshless Solutions Seminar, eds. C.A. Brebbia, A. Tadeu and V. Popov (WIT Press, Southampton, 2002) pp. 145–154.

    Google Scholar 

  19. J. Li, Y.C. Hon and C.S. Chen, Numerical comparisons of two meshless methods using radial basis functions, Engrg. Anal. Boundary Elements 26 (2002) 205–225.

    MATH  Google Scholar 

  20. W.R. Madych and S.A. Nelson, Multivariate interpolation and conditionally positive definite functions, Approx. Theory Appl. 4 (1988) 77–89.

    MATH  MathSciNet  Google Scholar 

  21. C.A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx. 2 (1986) 11–22.

    MATH  MathSciNet  Google Scholar 

  22. F.J. Narcowich and J.D. Ward, Norms of inverses and condition numbers for matrices associated with scattered data, J. Approx. Theory 64 (1991) 69–94.

    MATH  MathSciNet  Google Scholar 

  23. R.D. Passo, H. Garcke and G. Grun, On a fourth-order degenerate parabolic equation: Global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal. 29 (1998) 321–342.

    Article  MATH  MathSciNet  Google Scholar 

  24. M.J.D. Powell, The theory of radial basis function approximation in 1990, in: Advances in Numerical Analysis, ed. W. Light (Oxford Science, Oxford, 1992) pp. 105–210.

    Google Scholar 

  25. R. Schaback, A unified theory of radial basis functions: Native Hilbert spaces for radial basis functions II, J. Comput. Appl. Math. 121 (2000) 165–177.

    MATH  MathSciNet  Google Scholar 

  26. R. Schaback and Z. Wu, Operators on radial functions, J. Comput. Appl. Math. 73 (1996) 257–270.

    MATH  MathSciNet  Google Scholar 

  27. H. Wendland, Numerical solution of variational problems by radial basis functions, in: Approximation Theory, Vol. 9, eds. C.K. Chui and L.L. Schumaker (Vanderbilt Univ. Press, Nashville, TN, 1998) pp. 361–368.

    Google Scholar 

  28. H. Wendland, Error estimates for interpolation by compactly supported radial basis functions of minimal degree, J. Approx. Theory 93 (1998) 258–272.

    MATH  MathSciNet  Google Scholar 

  29. H. Wendland, Meshless Galerkin methods using radial basis functions, Math. Comp. 68 (1999) 1521–1531.

    MATH  MathSciNet  Google Scholar 

  30. M.F. Wheeler, A priori L 2 error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973) 723–759.

    MathSciNet  Google Scholar 

  31. S.M. Wong, Y.C. Hon, T.S. Li, S.L. Chung and E.J. Kansa, Multizone decomposition of time-dependent problems using the multiquadric scheme, Comput. Math. Appl. 37 (1999) 23–43.

    MATH  MathSciNet  Google Scholar 

  32. Z. Wu, Multivariate compactly supported positive definite radial functions, Adv. Comput. Math. 4 (1995) 283–292.

    Article  MATH  MathSciNet  Google Scholar 

  33. Z. Wu, Solving PDE with radial basis functions, in: Advances in Computational Mathematics, eds. Z. Chen, Y. Li, C.A. Micchelli and Y. Xu (Marcel Dekker, New York, 1999) pp. 537–543.

    Google Scholar 

  34. Z. Wu and R. Schaback, Local error estimates for radial basis function interpolation of scattered data, IMA J. Numer. Anal. 13 (1993) 13–27.

    MATH  MathSciNet  Google Scholar 

  35. X. Zhou, Y.C. Hon and J. Li, Overlapping domain decomposition method by radial basis functions, Appl. Numer. Math. 44 (2003) 243–257.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichun Li.

Additional information

Communicated by Z. Wu and B.Y.C. Hon

AMS subject classification

35G15, 65N12

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J. Mixed methods for fourth-order elliptic and parabolic problems using radial basis functions. Adv Comput Math 23, 21–30 (2005). https://doi.org/10.1007/s10444-004-1807-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-1807-7

Keywords

Navigation