Skip to main content
Log in

On the finite sum representations of the Lauricella functions F D

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

By using divided differences, we derive two different ways of representing the Lauricella function of n variables F (n)D (a,b 1,b 2,. . .,b n;c;x 1,x 2,. . .,x n) as a finite sum, for b 1,b 2,. . .,b n positive integers, and a,c both positive integers or both positive rational numbers with ca a positive integer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, Vol. 71 (Cambridge Univ. Press, Cambridge, 1999).

    MATH  Google Scholar 

  2. P. Appell and J. Kampé de Fériet, Functions Hypergéométriques et Hypersphériques: Polynômes d’Hermite (Gauthier-Villars, Paris, 1926).

    Google Scholar 

  3. P. Borwein, A. Cuyt and P. Zhou, Explicit construction of general multivariate Padé approximants to an Appell function, Adv. Comput. Math., to appear.

  4. A. Cuyt, K. Driver, J. Tan and B. Verdonk, A finite sum representation of the Appell series F 1(a,b,b ;c;x,y), J. Comput. Appl. Math. 105 (1999) 213–219.

    MATH  MathSciNet  Google Scholar 

  5. A. Cuyt, K. Driver, J. Tan and B. Verdonk, Exploring multivariate Padé approximants for multiple hypergeometric series, Adv. Comput. Math. 10 (1999) 29–49.

    MATH  MathSciNet  Google Scholar 

  6. J.S. Dehesa and A. Zarzo, Many-body systems, orthogonal polynomials and the Lauricella function FD(5), Physicalia Mag. 14 (1992) 35–48.

    Google Scholar 

  7. H. Exton, Multiple Hypergeometric Functions and Applications (Wiley, New York, 1976).

    MATH  Google Scholar 

  8. H. Exton, Handbook of Hypergeometric Integrals: Theory, Applications, Tables, Computer Programs (Ellis Horwood, Chichester, 1978).

    MATH  Google Scholar 

  9. C. Ferreira and J.L. López, Asymptotic expansions of Lauricella hypergeometric function F D, J. Comput. Appl. Math. 151 (2003) 235–256.

    MATH  MathSciNet  Google Scholar 

  10. G. Gasper and M. Rahman, Basic Hypergeometric Series Encyclopedia of Mathematics and its Applications, Vol. 35 (Cambridge Univ. Press, Cambridge, 1990).

    MATH  Google Scholar 

  11. G. Lauricella, Sulla funzioni ipergeometriche a più variabili, Rend. Circ. Math. Palermo 7 (1893) 111–158.

    Article  Google Scholar 

  12. S.H. Ong and P.A. Lee, Probabilistic interpretations of a transformation of Lauricella’s hypergeometric function of n variables and an integral of product of Laguerre polynomials, Internat. J. Math. Statist. Sci. 9 (2000) 5–13.

    MATH  MathSciNet  Google Scholar 

  13. E. Picard, Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques, C. R. Acad. Sci. Paris 90 (1880) 1119–1267.

    Google Scholar 

  14. M. Reimer, Constructive Theory of Multivariate Functions (Wissenschaftsverlag, Manheim, 1990).

    MATH  Google Scholar 

  15. C.K. Sharma and I.J. Singh, Some integrals involving the Lauricella functions and the multivariable H-function, Indian J. Pure Appl. Math. 21 (1990) 597–604.

    MATH  MathSciNet  Google Scholar 

  16. L.J. Slater, Generalized Hypergeometric Functions (Cambridge Univ. Press, Cambridge, 1966).

    MATH  Google Scholar 

  17. H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series (Wiley, New York, 1985).

    MATH  Google Scholar 

  18. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 2nd ed. (Springer, New York, 1992).

    Google Scholar 

  19. N.M. Temme, Special Functions: An Introduction to the Classical Functions of Mathematical Physics (Wiley, New York).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieqing Tan.

Additional information

Communicated by C.A. Micchelli

AMS subject classification

33D45, 40B05, 40C99

Jieqing Tan: Research supported by the National Natural Science Foundation of China under Grant No. 10171026 and Anhui Provincial Natural Science Foundation under Grant No. 03046102.

Ping Zhou: Corresponding author. Research supported by NSERC of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, J., Zhou, P. On the finite sum representations of the Lauricella functions F D . Adv Comput Math 23, 333–351 (2005). https://doi.org/10.1007/s10444-004-1838-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-1838-0

Keywords

Navigation