Skip to main content
Log in

Sufficient conditions for irregular Gabor frames

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Finding general and verifiable conditions which imply that Gabor systems are (resp. cannot be) Gabor frames is among the core problems in Gabor analysis. In their paper on atomic decompositions for coorbit spaces [H.G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations, and their atomic decomposition, I, J. Funct. Anal. 86 (1989), 307–340], the authors proved that every Gabor system generated with a relatively uniformly discrete and sufficiently dense time-frequency sequence will allow series expansions for a large class of Banach spaces if the window function is nice enough. In particular, such a Gabor system is a frame for the Hilbert space of square integrable functions. However, their proof is based on abstract analysis and does not give direct information on how to determine the density in the sense of directly applicable estimates. It is the goal of this paper to present a constructive version of the proof and to provide quantitative results. Specifically, we give a criterion for the general case and explicit density for some cases. We also study the existence of Gabor frames and show that there is some smooth window function such that the corresponding Gabor system is incomplete for arbitrary time-frequency lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Benedetto, C. Heil and D. Walnut, Differentiation and the Balian–Low theorem, J. Fourier Anal. Appl. 1 (1995) 355–402.

    Article  MATH  MathSciNet  Google Scholar 

  2. P.G. Casazza and O. Christensen, Approximation of the inverse frame operator and applications to Gabor frames, J. Approx. Theory 103 (2000) 338–356.

    Article  MATH  MathSciNet  Google Scholar 

  3. P.G. Casazza and O. Christensen, Weyl–Heisenberg frames for subspaces of L 2(ℝ), Proc. Amer. Math. Soc. 129 (2001) 145–154.

    Article  MATH  MathSciNet  Google Scholar 

  4. P.G. Casazza and O. Christensen, Gabor frames over irregular lattices, Adv. Comput. Math. 18 (2003) 329–344.

    Article  MATH  MathSciNet  Google Scholar 

  5. O. Christensen, Moment problems and stability results for frames with applications to irregular sampling and Gabor frames, Appl. Comp. Harmonic Anal. 3 (1996) 82–86.

    Article  MATH  MathSciNet  Google Scholar 

  6. O. Christensen, Frames, Riesz bases, and discrete Gabor/wavelet expansions, Bull. Amer. Math. Soc. (New series) 38 (2001) 273–291.

    Article  MATH  MathSciNet  Google Scholar 

  7. O. Christensen, An Introduction to Frames and Riesz Bases (Birkhäuser, Boston, 2003).

    MATH  Google Scholar 

  8. O. Christensen, B. Deng and C. Heil, Density of Gabor frames, Appl. Comput. Harmon. Anal. 7 (1999) 292–304.

    Article  MATH  MathSciNet  Google Scholar 

  9. O. Christensen, S. Favier and F. Zó, Irregular wavelet frames and Gabor frames, Approx. Theory Appl. 17 (2001) 90–101.

    Article  MATH  Google Scholar 

  10. C.K. Chui and X.L. Shi, Inequalities of Littlewood–Paley type for frames and wavelets, SIAM J. Math. Anal. 24 (1993) 263–277.

    Article  MATH  MathSciNet  Google Scholar 

  11. I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990) 961–1005.

    Article  MATH  MathSciNet  Google Scholar 

  12. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, PA, 1992).

    MATH  Google Scholar 

  13. I. Daubechies and A. Grossmann, Frames of entire functions in the Bargmann space, Comm. Pure Appl. Math. 41 (1988) 151–164.

    MATH  MathSciNet  Google Scholar 

  14. H.G. Feichtinger, Atomic characterizations of modulation spaces through Gabor-type representations, Rocky Mount. J. Math. 19 (1989) 113–126.

    Article  MATH  MathSciNet  Google Scholar 

  15. H.G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decomposition I, J. Funct. Anal. 86 (1989) 307–340.

    Article  MATH  MathSciNet  Google Scholar 

  16. H.G. Feichtinger and K. Gröchenig, Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view, in: Wavelets – A Tutorial in Theory and Applications, ed. C.K. Chui (Academic Press, Boston, 1992) pp. 359–397.

    Google Scholar 

  17. H.G. Feichtinger and A.J.E.M. Janssen, Validity of WH-frame bound conditions depends on lattice parameters, Appl. Comput. Harmon. Anal. 8 (2000) 104–112.

    Article  MATH  MathSciNet  Google Scholar 

  18. H.G. Feichtinger and N. Kaiblinger, Varying the time-frequency lattice of Gabor frames, Trans. Amer. Math. Soc. 356 (2004) 2001–2023.

    Article  MATH  MathSciNet  Google Scholar 

  19. H.G. Feichtinger and T. Strohmer, eds., Gabor Analysis and Algorithms: Theory and Applications (Birkhäuser, Boston, 1998).

    MATH  Google Scholar 

  20. H.G. Feichtinger and T. Strohmer, eds., Advances in Gabor Analysis, Applied and Numerical Harmonic Analysis (Birkhäuser, Basel, 2003).

    MATH  Google Scholar 

  21. H.G. Feichtinger and G. Zimmermann, A Banach space of test functions for Gabor analysis, in: Gabor Analysis and Algorithms: Theory and Applications (Birkhäuser, Boston, 1998) pp. 123–170.

    Google Scholar 

  22. D. Gabor, Theory of communications, J. Inst. Elect. Engrg. (London) 93 (1943) 429–457.

    Google Scholar 

  23. K. Gröchenig, Describing functions: atomic decompositions versus frames, Monatsh. Math. 112 (1991) 1–41.

    Article  MATH  MathSciNet  Google Scholar 

  24. K. Gröchenig, Irregular sampling of wavelet and short-time Fourier transforms, Construct. Approx. 9 (1993) 283–297.

    Article  MATH  Google Scholar 

  25. K. Gröchenig, An uncertainty principle related to the Poisson summation formula, Studia Math. 121 (1996) 87–104.

    MATH  MathSciNet  Google Scholar 

  26. K. Gröchenig, Foundations of Time-Frequency Analysis (Birkäuser, Boston, 2001).

    MATH  Google Scholar 

  27. G. Hardy, J.E. Littlewood and G. Pólya, Inequalities, 2nd edn. (Cambridge Univ. Press, Cambridge, 1952).

    MATH  Google Scholar 

  28. C. Heil and D. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989) 628–666.

    Article  MATH  MathSciNet  Google Scholar 

  29. W. Kozek, H.G. Feichtinger and J. Scharinger, Gabor analysis and linear system identification, in: Proc. Internat. Conf. on System Identification in Engineering Systems, Swansea, UK (March 1996) pp. 560–569.

  30. Y. Lyubarskii, Frames in the Bargmann space of entire functions, in: Entire and Subharmonic Functions, Advanced in Soviet Mathematics, Vol. 11, ed. B.Ya. Levin (Springer, Berlin, 1992) pp. 167–180.

    Google Scholar 

  31. A.M. Perelomov, On the completeness of a system of coherent states, Teor. Mat. Fiz. 6 (1971) 213–224.

    MathSciNet  Google Scholar 

  32. J. Ramanathan and T. Steger, Incompleteness of sparse coherent states, Appl. Comput. Harmon. Anal. 2 (1995) 148–153.

    Article  MATH  MathSciNet  Google Scholar 

  33. A. Ron and Z. Shen, Weyl–Heisenberg frames and Riesz bases in L 2(ℝd), Duke Math. J. 89 (1997) 148–153.

    Article  MathSciNet  Google Scholar 

  34. K. Seip and R. Wallstén, Density theorems for sampling and interpolation in the Bargmann–Fock space II, J. Reine Angew. Math. 429 (1992) 107–113.

    MATH  MathSciNet  Google Scholar 

  35. W. Sun and X. Zhou, On the stability of Gabor frames, Adv. in Appl. Math. 26 (2001) 181–191.

    Article  MATH  MathSciNet  Google Scholar 

  36. W. Sun and X. Zhou, Irregular wavelet/Gabor frames, Appl. Comput. Harmon. Anal. 13 (2002) 63–76.

    Article  MATH  MathSciNet  Google Scholar 

  37. W. Sun and X. Zhou, Irregular sampling for multivariate band-limited functions, Science China Series A 45 (2002) 1548–1556.

    MathSciNet  MATH  Google Scholar 

  38. W. Sun and X. Zhou, Irregular Gabor frames and their stability, Proc. Amer. Math. Soc. 131(9) 2883–2893.

  39. D.F. Walnut, Continuity properties of the Gabor frame operator, J. Math. Anal. Appl. 165 (1992) 479–504.

    Article  MATH  MathSciNet  Google Scholar 

  40. R.M. Young, An Introduction to Nonharmonic Fourier Series, revised edn. (Academic Press, Orlando, 2001).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans G. Feichtinger.

Additional information

Communicated by C.A. Micchelli

Mathematics subject classifications (2000)

42C15, 42C40, 65T60

Wenchang Sun: The second author was supported by the K.C. Wong Education Foundation, the National Natural Science Foundation of China (10171050 and 10201014), and the Research Fund for the Doctoral Program of Higher Education. He thanks NuHAG at the Department of Mathematics, University of Vienna for local hospitality.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feichtinger, H.G., Sun, W. Sufficient conditions for irregular Gabor frames. Adv Comput Math 26, 403–430 (2007). https://doi.org/10.1007/s10444-004-7210-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-7210-6

Keywords

Navigation