Skip to main content
Log in

Multi-level spectral Galerkin method for the Navier–Stokes equations, II: time discretization

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

A fully discrete multi-level spectral Galerkin method in space–time for the two-dimensional nonstationary Navier–Stokes problem is considered. The method is a multi-scale method in which the fully nonlinear Navier–Stokes problem is only solved on the lowest-dimensional space \(H_{m_{1}}\) with the largest time step Δt 1; subsequent approximations are generated on a succession of higher-dimensional spaces \(H_{m_{j}}\) with small time step Δt j by solving a linearized Navier–Stokes problem about the solution on the previous level. Some error estimates are also presented for the J-level spectral Galerkin method. The scaling relations of the dimensional numbers and time mesh widths that lead to optimal accuracy of the approximate solution in H 1-norm and L 2-norm are investigated, i.e., m jm 3/2j−1 , Δt j∼Δt 3/2j−1 , j=2,. . .,J. We demonstrate theoretically that a fully discrete J-level spectral Galerkin method is significantly more efficient than the standard one-level spectral Galerkin method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Devulder, M. Marion and E.S. Titi, On the rate of convergence of the nonlinear Galerkin methods, Math. Comp. 60 (1993) 495–514.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Foias, O. Manley and R. Temam, Modelling of the interaction of small and large eddies in two-dimensional turbulent flows, RAIRO Model. Math. Anal. Numer. 22 (1988) 93–114.

    MATH  MathSciNet  Google Scholar 

  3. B. Garcia-Archilla, J. Novo and E.S. Titi, Postprocessing the Galerkin method: A novel approach to approximate inertial manifolds, SIAM J. Numer. Anal. 35 (1998) 941–972.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Garcia-Archilla, J. Novo and E.S. Titi, An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier–Stokes equations, Math. Comp. 68 (1999) 893–911.

    Article  MATH  MathSciNet  Google Scholar 

  5. V. Girault and J.L. Lions, Two-grid finite element scheme for the steady Navier–Stokes equations in polyhedra, Portugal. Math. 58 (2001) 25–57.

    MATH  MathSciNet  Google Scholar 

  6. V. Girault and J.L. Lions, Two-grid finite element scheme for the transient Navier–Stokes problem, Math. Model. Numer. Anal. 35 (2001) 945–980.

    Article  MATH  MathSciNet  Google Scholar 

  7. V. Girault and P.A. Raviart, Finite Element Approximation of the Navier–Stokes Equations (Springer, Berlin/New York, 1979).

    Google Scholar 

  8. Y. He, Two-level method based on finite element and Crank–Nicolson extrapolation for the time-dependent Navier–Stokes equations, SIAM J. Numer. Anal. 41 (4) (2003) 1263–1285.

    Article  MATH  MathSciNet  Google Scholar 

  9. Y. He and K. Li, Stability and convergence of finite element nonlinear Galerkin methods for the Navier–Stokes equations, Numer. Math. 79 (1998) 77–106.

    Article  MATH  MathSciNet  Google Scholar 

  10. Y. He and K. Li, Postprocessing techniques for the Navier–Stokes equations, in: Dynamics of Continuous, Discrete and Impulsive Systems, to appear.

  11. Y. He, K.M. Liu and W. Sun, Multi-level spectral Galerkin method for the Navier–Stokes problem I: Spatial discretization, submitted.

  12. Y. He and R.M.M. Mattheij, Stability and convergence for the reform postprocessing Galerkin method, Nonlinear Anal. Real. World Appl. 1 (2000) 517–533.

    Article  MATH  MathSciNet  Google Scholar 

  13. Y. He and R.M.M. Mattheij, Reform postprocessing Galerkin method for the Navier–Stokes equations, submitted.

  14. J.G. Heywood and R. Rannacher, On the question of turbulence modeling by appoximate inertial manifolds and the nonlinear Galerkin method, SIAM J. Numer. Anal. 30 (1993) 1603–1621.

    Article  MATH  MathSciNet  Google Scholar 

  15. J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem I: Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal. 19 (1982) 275–311.

    Article  MATH  MathSciNet  Google Scholar 

  16. W. Layton, A two-level discretization method for the Navier–Stokes equations, Comput. Math. Appl. 26 (1993) 33–38.

    Article  MATH  MathSciNet  Google Scholar 

  17. W. Layton, H.K. Lee and J. Peterson, Numerical solution of the stationary Navier–Stokes equations using a multilevel finite element method, SIAM J. Sci. Comput. 20 (1998) 1–12.

    Article  MathSciNet  Google Scholar 

  18. W. Layton and H.W.J. Leferink, A multilevel mesh independence principle for the Navier–Stokes equations, SIAM J. Numer. Anal. 33 (1996) 17–30.

    Article  MATH  MathSciNet  Google Scholar 

  19. W. Layton and L. Tobiska, A two-level method with backtraking for the Navier–Stokes equations, SIAM J. Numer. Anal. 35 (1998) 2035–2054.

    Article  MATH  MathSciNet  Google Scholar 

  20. L.G. Margolin, E.S. Titi and S. Wynne, Postprocessing the Galerkin and nonlinear Galerkin methods – a truncation analysis point of view, SIAM J. Numer. Anal., to appear.

  21. G. Métivier, Étude asymptotique des valeurs propres et la fonction spectrale de problèms aux limites, Thèse, Université de Nice, France (1976).

  22. M.A. Olshanskii, Two-level method and some a priori estimates in unsteady Navier–Stokes calculations, J. Comput. Appl. Math. 104 (1999) 173–191.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Shen, Long time stability and convergence for fully discrete nonlinear Galerkin methods, Appl. Anal. 38 (1990) 201–229.

    MATH  MathSciNet  Google Scholar 

  24. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Springer, New York/Berlin, 1988).

    MATH  Google Scholar 

  25. J. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput. 15 (1994) 231–237.

    Article  MATH  MathSciNet  Google Scholar 

  26. J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal. 33 (1996) 1759–1777.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinnian He.

Additional information

Communicated by J. Xu

Mathematics subject classifications (2000)

35L70, 65N30, 76D06

Subsidized by the Special Funds for Major State Basic Research Projects G1999032801-07, NSF of China 10371095 and the City University of Hong Kong Research Project 7001093, NSF of China 50323001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Liu, KM. Multi-level spectral Galerkin method for the Navier–Stokes equations, II: time discretization. Adv Comput Math 25, 403–433 (2006). https://doi.org/10.1007/s10444-004-7640-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-7640-1

Keywords

Navigation