Skip to main content
Log in

Numerical differentiation by radial basis functions approximation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Based on radial basis functions approximation, we develop in this paper a new com-putational algorithm for numerical differentiation. Under an a priori and an a posteriori choice rules for the regularization parameter, we also give a proof on the convergence error estimate in reconstructing the unknown partial derivatives from scattered noisy data in multi-dimension. Numerical examples verify that the proposed regularization strategy with the a posteriori choice rule is effective and stable to solve the numerical differential problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Adams, Sobolev Spaces (Academic Press [A subsidiary of Harcourt Brace Jovanovich], New York–London, 1975). Pure and Applied Mathematics, Vol. 65.

  2. R.S. Anderssen and M. Hegland, For numerical differentiation, dimensionality can be a blessing! Math. Comput. 68(227) (1999) 1121–1141.

    Article  MATH  Google Scholar 

  3. J. Cheng, Y.C. Hon and Y.B. Wang, A numerical method for the discontinuous solutions of Abel integral equations, in: Inverse Problems and Spectral Theory, volume 348 of Contemp. Math., pp. 233–243. Am. Math. Soc., Providence, Rhode Island, 2004.

  4. J. Cullum, Numerical differentiation and regularization, SIAM J. Numer. Anal. 8 (1971) 254–265.

    Article  Google Scholar 

  5. S.R. Deans, The Radon Transform and Some of its Applications, A Wiley-Interscience Publication (Wiley, New York, 1983).

    Google Scholar 

  6. J. Duchon, Splines minimizing rotation-invariant semi-norms in Sobolev spaces, in: Constructive Theory of Functions of Several Variables (Proc. Conf., Math. Res. Inst., Oberwolfach, 1976), Lecture Notes in Math., Vol. 571. (Springer, Berlin Heidelberg New York, 1977) pp. 85–100.

  7. J. Duchon, Sur l'erreur d'interpolation des fonctions de plusieurs variables par les D m-splines. RAIRO Anal. Numér. 12(4) (1978) 325–334, vi.

    MATH  Google Scholar 

  8. R. Gorenflo and S. Vessella, Abel Integral Equations, volume 1461 of Lecture Notes in Mathematics (Springer, Berlin Heidelberg New York, 1991), Analysis and applications.

  9. C.W. Groetsch, Differentiation of approximately specified functions, Am. Math. Mon. 98(9) (1991) 847–850

    Article  MATH  Google Scholar 

  10. M. Hanke and O. Scherzer, Error analysis of an equation error method for the identification of the diffusion coefficient in a quasi-linear parabolic differential equation, SIAM J. Appl. Math. 59(3) (1999) 1012–1027 (electronic).

    Article  MATH  Google Scholar 

  11. M. Hanke and O. Scherzer, Inverse problems light: numerical differentiation, Am. Math. Mon. 108(6) (2001) 512–521.

    Article  MATH  Google Scholar 

  12. F.J. Hickernell and Y.C. Hon, Radial basis function approximations as smoothing splines, Appl. Math. Comput. 102(1) (1999) 1–24.

    Article  MATH  Google Scholar 

  13. W. Light and H. Wayne, On power functions and error estimates for radial basis function interpolation, J. Approx. Theory 92(2) (1998) 245–266.

    Article  MATH  Google Scholar 

  14. L.T. Luh, The embedding theory of native spaces, Approx. Theory its Appl. (N.S.) 17(4) (2001) 90–104.

    Article  MATH  Google Scholar 

  15. W.R. Madych and S.A. Nelson, Multivariate interpolation and conditionally positive definite functions. II, Math. Comput. 54(189) (1990) 211–230.

    Article  MATH  Google Scholar 

  16. M.J.D. Powell, The uniform convergence of thin plate spline interpolation in two dimensions, Numer. Math. 68(1) (1994) 107–128.

    Article  MATH  Google Scholar 

  17. A.G. Ramm and A.B. Smirnova, On stable numerical differentiation, Math. Comput. 70(235) (2001) 1131–1153 (electronic).

    Article  MATH  Google Scholar 

  18. R. Schaback, Improved error bounds for scattered data interpolation by radial basis functions, Math. Comput. 68(225) (1999) 201–216.

    Article  MATH  Google Scholar 

  19. A.N. Tikhonov and V.Y. Arsenin, Solutions of Ill-posed Problems, (V. H. Winston & Sons, Washington, District of Columbia: Wiley, New York, 1977). Translated from the Russian, Preface by translation editor Fritz John, Scripta Series in Mathematics.

  20. G. Wahba and J. Wendelberger, Some new mathematical methods for variational objective analysis using splines and cross validation, Mon. Weather Rev. 108 (1980) 1122–1143.

    Article  Google Scholar 

  21. Y.B. Wang, X.Z. Jia and J. Cheng, A numerical differentiation method and its application to reconstruction of discontinuity, Inverse Problems 18(6) (2002) 1461–1476.

    Article  MATH  Google Scholar 

  22. Z.M. Wu and R. Schaback, Local error estimates for radial basis function interpolation of scattered data, IMA J. Numer. Anal. 13(1) (1993) 13–27.

    Article  MATH  Google Scholar 

  23. J. Yoon, L p -error estimates for “shifted” surface spline interpolation on Sobolev space, Math. Comput. 72(243) (2003) 1349–1367 (electronic).

    Article  MATH  Google Scholar 

  24. J. Yoon, On the stationary L p -approximation power to derivatives by radial basis function interpolation, Appl. Math. Comput. 150(3) (2004) 875–887.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Wei.

Additional information

Communicated by Joe Ward

*The work described in this paper was partially supported by a grant from CityU (Project No. 7001646) and partially supported by the National Natural Science Foundation of China (No. 10571079).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, T., Hon, Y.C. Numerical differentiation by radial basis functions approximation. Adv Comput Math 27, 247–272 (2007). https://doi.org/10.1007/s10444-005-9001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-005-9001-0

Keywords

Mathematics subject classifications (2000)

Navigation