Skip to main content
Log in

Equivalence of \(n\)-point Gauss–Chebyshev rule and \(4n\)-point midpoint rule in computing the period of a Lotka–Volterra system

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Two integrals (3.6), (4.7) for the period of a periodic solution of the Lotka–Volterra system are presented in terms of two inverse functions of \(x\exp(x)\) restricted on \(x \geq -1\), \( x \leq -1\), respectively. In computing this period numerically, the integral (3.6), which possesses a weak singularity of the square root type at each endpoint of the integration, is an excellent example of using the Gauss–Chebyshev integration rule of the first kind; while the integral (4.7), which is an integral of a smooth periodic function over its period \([0, 2\pi]\), is an excellent example of using the midpoint rule, but not the trapezoidal rule, suggested by Waldvogel [39, 40], due to a removable singularity of the integrand at \(0\), \(\pi/2\), \(\pi\), \(3\pi/2\), and \(2\pi\), respectively. This paper shows, in computing the period of a periodic solution of the Lotka–Volterra system, the \(n\)-point Gauss–Chebyshev integration rule of the first kind applied to the integral (3.6) becomes the \(4n\)-point midpoint rule to the integral (4.7).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Washington, District of Columbia (1964)

    MATH  Google Scholar 

  2. Bellman, R., Cooke, K.L.: Differential-Difference Equations. Academic, New York (1963)

    MATH  Google Scholar 

  3. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On Lambert’s W function. Adv. Comput. Math. 5, 329–359 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic, Orlando, Florida (1984)

    MATH  Google Scholar 

  5. Davis, H.T.: Introduction to Nonlinear Differential and Integral Equations. United States Atomic Energy Commission, Washington, District of Columbia (1960). Reissued by Dover, New York (1962)

    Google Scholar 

  6. Dutt, R.: Application of Hamilton–Jacobi theory to the Lotka–Volterra oscillator. Bull. Math. Biol. 38, 459–465 (1976)

    MATH  MathSciNet  Google Scholar 

  7. Erneux, T., Kozyreff, G.: Nearly vertical Hopf bifurcation for a passively Q-switched microchip laser. J. Stat. Phys. 101, 543–552 (2000)

    Article  MATH  Google Scholar 

  8. Fabijonas, B.R., Olver, F.W.J.: On the reversion of an asymptotic expansion and the zeros of the Airy functions. SIAM Rev. 41, 762–773 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ford, W.F., Xu, Y., Zhao, Y.: Derivative corrections for quadrature formulas. Adv. Comput. Math. 6, 139–157 (1996)

    Article  MathSciNet  Google Scholar 

  10. Fritsch, F.N., Shafer, R.E., Crowley, W.P.: Algorithm 443: Solutions of the transcendental equation \(w e^w = x\). Communication of the ACM 16, 123–124 (1973)

    Article  Google Scholar 

  11. Frame, J.S.: Explicit solutions in two species Volterra systems. J. Theor. Biol. 43, 73–81 (1974)

    Article  Google Scholar 

  12. Grasman, J.: Asymptotic Methods for Relaxation Oscillations and Applications. Springer, Berlin Heidelberg New York (1987)

    MATH  Google Scholar 

  13. Grasman, J., Veling, E.: An asymptotic formula for the period of a Volterra–Lotka system. Math. Biosci. 18, 185–189 (1973)

    Article  MATH  Google Scholar 

  14. Hsu, S.-B.: A remark on the period of the periodic solution in the Lotka–Volterra system. J. Math. Anal. Appl. 95, 428–436 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kaneko, H., Xu, Y.: Gauss-type quadratures for weakly singular integrals and their applications to Fredholm integral equations of the second kind. Math. Comput. 62, 739–753 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kapur, S., Rokhlin, V.: High-order corrected trapezoidal quadrature rules for singular functions. SIAM J. Numer. Anal. 34, 1331–1356 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Knopp, K.: Theory and Application of Infinite Series. Blackie & Son, Ltd., Glasgow, Scotland. Reissued in 1990 by Dover, New York

  18. Kozyreff, G.: Nonlinear Aspects of the Dynamics Induced by Dissipative Light–matter Interaction. Doctoral thesis, Université Libre de Bruxelles, 2001. http://www.ulb.ac.be/sciences/ont/theses/Gregory_Kozyreff_Thesis.pdf

  19. Lauwerier, H.A.: A limit case of a Volterra–Lotka system. Mathematisch Centrum, Amsterdam, Report TN 79, 1975

  20. Lotka, A.J.: Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc. 42, 1595–1599 (1920)

    Article  Google Scholar 

  21. Lotka, A.J.: Analytical note on certain rhythmic relations in organic systems. Proc. Natl. Acad. Sci. U.S.A. 6, 410–415 (1920)

    Article  Google Scholar 

  22. Lotka, A.J.: Elements of Physical Biology. William and Wilkins, Baltimore (1925). Reissued as Elements of Mathematical Biology, pp. 88–90. Dover, New York (1956)

    MATH  Google Scholar 

  23. Milnor, J.: Morse Theory, based on lecture notes by M. Spivak and R. Wells, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, New Jersey (1963)

  24. Morse, M.: Relations between the critical points of a real function of \(n\) independent variables. Trans. Am. Math. Soc. 27, 345–396 (1925)

    Article  MathSciNet  Google Scholar 

  25. Murray, J.D.: Lectures on Nonlinear-Differential-Equation Models in Biology. Clarendon, Oxford (1977)

    Google Scholar 

  26. Murray, J.D.: Mathematical Biology, Second, corrected ed., Springer, Berlin Heidelberg New York (1993)

    Google Scholar 

  27. Olver, F.W.J.: Asymptotics and Special Functions. Academic, New York (1974)

    Google Scholar 

  28. Rokhlin, V.: End-point corrected trapezoidal quadrature rules for singular functions. Comput. Math. Appl. 20, 51–62 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rothe, F.: The periods of the Volterra–Lotka system. J. Reine Angew. Math. 355, 129–138 (1985)

    MathSciNet  Google Scholar 

  30. Rothe, F.: Thermodynamics, real and complex periods of the Volterra model. Z. Angew. Math. Phys. 36, 395–421 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rubinow, S.I.: Introduction to Mathematical Biology. Wiley, New York (1975)

    MATH  Google Scholar 

  32. Shih, S.-D.: A very slowly moving viscous shock of Burgers’ equation in the quarter plane. Appl. Anal. 56, 1–18 (1995)

    MATH  MathSciNet  Google Scholar 

  33. Shih, S.-D.: The period of a Lotka–Volterra system. Taiwanese J. Math. 1, 451–470 (1997)

    MATH  MathSciNet  Google Scholar 

  34. Shih, S.-D.: On periodic orbits of relaxation oscillations. Taiwanese J. Math. 6, 205–234 (2002)

    MATH  MathSciNet  Google Scholar 

  35. Temme, N.M.: An Introduction to the Classical Functions of Mathematical Physics. Wiley, New York (1996)

    MATH  Google Scholar 

  36. Vasil’eva, A.B., Belyanin, M.P.: The theory of contrastive structure. Moscow Univ. Comput. Math. Cybernet. (2), 25–32 (1988)

  37. Venturino, E., Chandler, G.A.: Calculation of line integrals in boundary integral methods. Adv. Comput. Math. 13, 293–318 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. Volterra, V.: Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. R. Acad. Naz. dei Lincei, (ser. 6), 2, 31–113 (1926)

  39. Waldvogel, J.: The period in the Volterra–Lotka predator–prey model. SIAM J. Numer. Anal. 20, 1264–1272 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  40. Waldvogel, J.: The period in the Volterra–Lotka system is monotonic. J. Math. Anal. Appl. 114, 178–184 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  41. Xu, Y., Zhao, Y.: Quadrature for improper integrals and their applications in integral equations. In: Proceedings of Symposia in Applied Math., Vol. 48, pp. 409–413. American Mathematical Society, Providence, Rhode Island (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shagi-Di Shih.

Additional information

Dedicated to R. Bruce Kellogg on the occasion of his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, SD., Chow, SS. Equivalence of \(n\)-point Gauss–Chebyshev rule and \(4n\)-point midpoint rule in computing the period of a Lotka–Volterra system. Adv Comput Math 28, 63–79 (2008). https://doi.org/10.1007/s10444-006-9013-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-006-9013-4

Keywords

Mathematics Subject Classifications (2000)

Navigation