Skip to main content
Log in

Construction of σ-orthogonal polynomials and gaussian quadrature formulas

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Let be a measure on R and let σ = (m 1, m 2,...,m n ), where m k ≥ 1, k = 1,2,...,n, are arbitrary real numbers. A polynomial ω n (x) := (xx 1)(xx 2)...(xx n ) with x 1x 2 ≤ ... ≤ x n is said to be the nth σ-orthogonal polynomial with respect to if the vector of zeros (x 1, x 2, ..., x n)T is a solution of the extremal problem

$${\int_R {{\prod\limits_{k = 1}^n {{\left| {x - x_{k} } \right|}^{{m_{k} }} d\alpha {\left( x \right)} = {\mathop {\min }\limits_{y_{1} \leqslant y_{2} \leqslant ... \leqslant y_{n} } }} }} }\;{\int_R {{\prod\limits_{k = 1}^n {{\left| {x - y_{k} } \right|}^{{m_{k} }} d\alpha {\left( x \right)}.} }} }$$

In this paper the existence, uniqueness, characterizations, and continuity with respect to σ of a σ-orthogonal polynomial under a more mild assumption are established. An efficient iterative method based on solving the system of normal equations for constructing a σ-orthogonal polynomial is presented when all the m k are arbitrary real numbers no less than 2. A simple method to calculate the Cotes numbers of the corresponding generalized Gaussian quadrature formula when all the m k are positive integers no less than 2 is provided. Finally, some numerical examples are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrow, D.: On multiple node Gaussian quadrature formulae. Math. Comp. 32, 431–439 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bojanov, B.D.: Extremal problems in the set of polynomials with fixed multiplicities of zeros. C. R. Acad. Bulgare Sci. 31, 377–400 (1978)

    MathSciNet  Google Scholar 

  3. Bojanov, B.D.: Oscillating polynomials of least L 1-norm. In: Hammerlin, G. (ed.) Numerical Integration. vol. 57, pp. 25–33 ISNM (1982)

  4. Bojanov, B.D., Braess, D., Dyn, N.: Generalized Gaussian quadrature formulas. J. Approx. Theory 48, 335–353 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gautschi, W., Milovanović, G.V.: S-orthogonality and construction of Gauss-Turán-type quadrature formulae. J. Comput. Appl. Math. 86, 205–218 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ghizzetti, A., Ossicini, A.: Sull’esistenza e unicitat delle formule di quadrature Gaussiane. Rend. Mat. 5, 1–15 (1975)

    MathSciNet  Google Scholar 

  7. Milovanović, G.V.: Construction of s-orthogonality and Turán quadrature formulae. In: Milovanović, G.V. (ed.) Numerical Methods and Approximation Theory III (Nis̆, 1987), pp. 311–318. Univ. Nis̆, Nis̆ (1988)

  8. Milovanović, G.V.: Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation. J. Comput. Appl. Math. 127, 267–286 (2001)

    Article  MathSciNet  Google Scholar 

  9. Milovanović, G.V., Spalević, M.M.: Quadrature formulae connected to σ-orthogonal polynomials. J. Comput. Appl. Math. 140, 619–637 (2002)

    Article  MathSciNet  Google Scholar 

  10. Popoviciu, T.: Aspura unei generalizari a formulei de integrare numerica a lui Gauss. Acad. Republ. Popul. Romine Studii Cerc. Mat. 6, 29–57 (1955)

    MathSciNet  Google Scholar 

  11. Shi, Y.G.: A kind of extremal problem of integration on an arbitrary measure. Acta Sci. Math. (Szeged) 65, 567–575 (1999)

    MATH  MathSciNet  Google Scholar 

  12. Shi, Y.G.: On some problems of P. Turán concerning L m extremal polynomials and quadrature formulas. J. Approx. Theory 100, 203–220 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Shi, Y.G.: On Hermite interpolation. J. Approx. Theory 105, 49–86 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Tchakaloff, L.: Generalized quadrature formulae of Gaussian type. Bulgar. Akad. Nauk. Izv. Mat. Institut, (in Bulgarian) 2, 67–84 (1954)

    Google Scholar 

  15. Turán, P.: On the theory of mechanical quadrature. Acta Sci. Math. (Szeged) 12, 30–37 (1950)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Guang Shi.

Additional information

Communicated by Y. Xu.

Support in part by Natural Science Foundation of China under grants 10241004 and 10371130.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y.G., Xu, G. Construction of σ-orthogonal polynomials and gaussian quadrature formulas. Adv Comput Math 27, 79–94 (2007). https://doi.org/10.1007/s10444-007-9033-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-007-9033-8

Keywords

Mathematics Subject Classifications (2000)

Navigation