Skip to main content
Log in

A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible Stokes flow

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Biharmonic equations have many applications, especially in fluid and solid mechanics, but is difficult to solve due to the fourth order derivatives in the differential equation. In this paper a fast second order accurate algorithm based on a finite difference discretization and a Cartesian grid is developed for two dimensional biharmonic equations on irregular domains with essential boundary conditions. The irregular domain is embedded into a rectangular region and the biharmonic equation is decoupled to two Poisson equations. An auxiliary unknown quantity Δu along the boundary is introduced so that fast Poisson solvers on irregular domains can be used. Non-trivial numerical examples show the efficiency of the proposed method. The number of iterations of the method is independent of the mesh size. Another key to the method is a new interpolation scheme to evaluate the residual of the Schur complement system. The new biharmonic solver has been applied to solve the incompressible Stokes flow on an irregular domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J., Swarztrauber, P., Sweet, R.: Fishpack: efficient Fortran subprograms for the solution of separable elliptic partial differential equations. http://www.netlib.org/fishpack/

  2. Brenner, S.C.: An optimal-order nonconforming multigrid method for the biharmonic equation. SIAM J. Numer. Anal. 26, 1124–1138 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chan, R.H., DeLillo, T.K., Horn, M.A.: The numerical solution of the biharmonic equation by conformal mapping. SIAM J. Sci. Comput. 18(6), 1571–1582 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, G.: Immersed interface method for biharmonic equations defined on irregular domains and its application to the Stokes flow, Ph.D. thesis, North Carolina State University (2003)

  5. Davini, C., Pitacco, I.: An unconstrained mixed method for the biharmonic problem. SIAM J. Numer. Anal. 38, 820–836 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. W.E., Liu, J.: Vorticity boundary condition and related issues for finite difference schemes. J. Comput. Phys. 124, 368–382 (1996)

  7. Ehrlich, L.W.: Solving the biharmonic equation as coupled finite difference equations. SIAM J. Numer. Anal. 8 (1971)

  8. Glowinski, R., Pironneau, O.: Numerical methods for the first biharmonic equation and for the two-dimensional stokes problem. SIAM Rev. 21, 167–212 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. Greenbaum, A., Greengard, L., Mayo, A.: On the numerical-solution of the biharmonic equation in the plane. Phy. D 60, 216–225 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gupta, M.M.: Spectrum transformation methods for divergent iteration. NASA Techinal Memorandum 103745 (ICOMP-91-02) (1991)

  11. Gupta, M.M., Manohar, R.: Direct solution of biharmonic equation using noncoupled approach. J. Comput. Phys. 33, 236–248 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hanisch, M.R.: Multigrid preconditioning for the biharmonic Dirichlet problem. SIAM J. Numer. Anal. 30(1), 184–214 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hou, T., Li, Z., Osher, S., Zhao, H.: A hybrid method for moving interface problems with application to the Hele-Shaw flow. J. Comput. Phys. 134, 236–252 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hunter, J., Li, Z., Zhao, H.: Autophobic spreading of drops. J. Comput. Phys. 183, 335–366 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jiang, G., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kupferman, R.: A central-difference scheme for a pure stream function formulation of incompressible viscous flow. SIAM J. Sci. Statist. Comput. 23 (2001)

  17. LeVeque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31, 1019–1044 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, Z.: A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. Anal. 35, 230–254 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Li, Z.: IIMPACK: a collection of fortran codes for interface problems. Anonymous ftp at ftp.ncsu.edu under the directory: /pub/math/zhilin/Package and http://www4.ncsu.edu/~zhilin/IIM, last updated (2005)

  20. Li, Z., Ito, K., Lai., M.-C.: An augmented approach for Stokes equations with a discontinuous viscosity and singular forces. NCSU-CRSC Tech. Report: CRSC-TR04-23, North Carolina State Univeristy (2004), Computers & Fluids, 36, 622–635 (2007)

  21. Li, Z., Wan, X., Ito, K., Lubkin, S.: An augmented pressure boundary condition for a Stokes flow with a non-slip boundary condition. Commun. Comput. Phys. 1, 874–885 (2006)

    Google Scholar 

  22. Li, Z., Zhao, H., Gao, H.: A numerical study of electro-migration voiding by evolving level set functions on a fixed cartesian grid. J. Comput. Phys. 152, 281–304 (1999)

    Article  MATH  Google Scholar 

  23. Mayo, A.: The fast solution of Poisson’s and the biharmonic equations on irregular regions. SIAM J. Numer. Anal. 21, 285–299 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mayo, A., Greenbaum, A.: Fast parallel iterative solution of Poisson’s and the biharmonic equations on irregular regions. SIAM J. Sci. Statist. Comput. 13, 101–118 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. McLaurin, J.W.: A general coupled equation approach for solving the biharmonic boundary value problem. SIAM J. Numer. Anal. 11, 14–33 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  26. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)

    Google Scholar 

  27. Bjørstad, P.: Fast numerical solution of the biharmonic dirichlet problem on rectangles. SIAM J. Numer. Anal. 20 (1983)

  28. Saad, Y.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sethian, J.A.: Level Set Methods and Fast Marching Methods, 2nd edn. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  30. Smith, J.: The coupled equation approach to the numerical solution of the biharmonic equation by finite differences, I. SIAM J. Numer. Anal. 5, 323–339 (1968)

    Article  MathSciNet  Google Scholar 

  31. Smith, J.: The coupled equation approach to the numerical solution of the biharmonic equation by finite differences, II. SIAM J. Numer. Anal. 7, 104–112 (1970)

    Article  MathSciNet  Google Scholar 

  32. Stephenson, J.W.: Single cell discretizations of order two and four for biharmonic problems. J. Comput. Phys. 55, 65–80 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  33. Swarztrauber, P.N.: Fast Poisson solver. In: Golub, G.H. (ed.) Studies in Numerical Analysis, vol. 24, pp. 319–370. MAA (1984)

  34. Thatcher, R.W.: A least squares method for solving biharmonic problems. SIAM J. Numer. Anal. 38, 1523–1539 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. Timoshenko, S., Goodier, J.: Theory of Elasticity. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilin Li.

Additional information

Communicated by Z. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Li, Z. & Lin, P. A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible Stokes flow. Adv Comput Math 29, 113–133 (2008). https://doi.org/10.1007/s10444-007-9043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-007-9043-6

Keywords

Mathematics Subject Classifications (2000)

Navigation