Skip to main content
Log in

On convergent numerical algorithms for unsymmetric collocation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we are interested in some convergent formulations for the unsymmetric collocation method or the so-called Kansa’s method. We review some newly developed theories on solvability and convergence. The rates of convergence of these variations of Kansa’s method are examined and verified in arbitrary–precision computations. Numerical examples confirm with the theories that the modified Kansa’s method converges faster than the interpolant to the solution; that is, exponential convergence for the multiquadric and Gaussian radial basis functions (RBFs). Some numerical algorithms are proposed for efficiency and accuracy in practical applications of Kansa’s method. In double–precision, even for very large RBF shape parameters, we show that the modified Kansa’s method, through a subspace selection using a greedy algorithm, can produce acceptable approximate solutions. A benchmark algorithm is used to verify the optimality of the selection process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cecil, T., Qian, J., Osher, S.: Numerical methods for high dimensional hamiltonąvjacobi equations using radial basis functions. J. Comp. Physiol. 196(1), 327–347 (2004)

    MATH  MathSciNet  Google Scholar 

  2. Fasshauer, G.E.: Solving differential equations with radial basis functions: multilevel methods and smoothing. Adv. Comput. Math. 11(2–3), 139–159 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Keck, R., Hietel, D.: A projection technique for incompressible flow in the meshless finite volume particle method. Adv. Comput. Math. 23(1–2), 143–169 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Li, J.: Mixed methods for fourth-order elliptic and parabolic problems using radial basis functions. Adv. Comput. Math. 23(1–2), 21–30 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Moridis, G.J., Kansa, E.J.: The Laplace transform multiquadrics method: a highly accurate scheme for the numerical solution of linear partial differential equations. J. Appl. Sci. Comput. 1(2), 375–407 (1994)

    MathSciNet  Google Scholar 

  6. Wong, A.S.M., Hon, Y.C., Li, T.S., Chung, S.L., Kansa, E.J.: Multizone decomposition for simulation of time-dependent problems using the multiquadric scheme. Comput. Math. Appl. 37(8), 23–43 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Wong, S.M., Hon, Y.C., Golberg, M.A.: Compactly supported radial basis functions for the shallow water equations. Int. J. Appl. Sci. Comput. 127, 79–101 (2002)

    MATH  MathSciNet  Google Scholar 

  8. Wright, G.B., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comp. Physiol. 212(1), 99–123 (2006)

    MATH  MathSciNet  Google Scholar 

  9. Young, D.L., Jane, S.C., Lin, C.Y., Chiu, C.L., Chen, K.C.: Solutions of 2D and 3D Stokes laws using multiquadrics method. Eng. Anal. Bound. Elem. 28(10), 1233–1243 (2004)

    Article  MATH  Google Scholar 

  10. Zhou, X., Hon, Y.C., Cheung, K.F.: A grid-free, nonlinear shallow-water model with moving boundary. Eng. Anal. Bound. Elem. 28(9), 1135–1147 (2004)

    Article  Google Scholar 

  11. Hu, H.-Y., Li, Z.-C., Cheng, A.H.-D.: Radial basis collocation methods for elliptic boundary value problems. Comput. Math. Appl. 50(1–2), 289–320 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Li, Z.C., Lu, T.T.: Singularities and treatments of elliptic boundary value problems. Math. Comput. Model. 31(8–9), 97–145 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics. I. Surface approximations and partial derivative estimates. Comput. Math. Appl. 19(8–9), 127–145 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19(8–9), 147–161 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hon, Y.C., Schaback, R.: On unsymmetric collocation by radial basis functions. Appl. Math. Comput. 119(2–3), 177–186 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hon, Y.C., Schaback, R.: Solvability of partial differential equations by meshless kernel methods. Adv. Comput. Math. 28, 283–299 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ling, L., Opfer, R, Schaback, R.: Results on meshless collocation techniques. Eng. Anal. Bound. Elem. 30(4), 247–253 (2006)

    Article  Google Scholar 

  18. Ling, L., Schaback, R.: On adaptive unsymmetric meshless collocation. In: Atluri, S.N., Tadeu, A.J.B. (eds.) Proceedings of the 2004 International Conference on Computational & Experimental Engineering and Sciences, volume CD-ROM, page paper # 270, Forsyth, USA, 2004. Advances in Computational & Experimental Engineering & Sciences. Tech Science, Palmdale (2004)

    Google Scholar 

  19. Ling, L., Schaback, R.: Stable and convergent unsymmetric meshless collocation methods. SIAM Numer. Anal. 46(3), 1097–1115 (2008)

    Article  MathSciNet  Google Scholar 

  20. Schaback, R.: Convergence of unsymmetric kernel-based meshless collocation methods. SIAM J. Numer. Anal. 45(1), 333–351 (2007)

    MATH  MathSciNet  Google Scholar 

  21. Driscoll, T.A., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43(3–5), 413–422 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fornberg, B., Driscoll, T.A., Wright, G., Charles, R.: Observations on the behavior of radial basis function approximations near boundaries. Comput. Math. Appl. 43(3–5), 473–490 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48(5–6), 853–867 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ling, L., Kansa, E.J.: A least-squares preconditioner for radial basis functions collocation methods. Adv. Comput. Math. 23(1–2), 31–54 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11(2–3), 193–210 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Schaback, R.: Recovery of functions from weak data using unsymmetric meshless kernel-based methods. Appl. Numer. Math. 58, 726–741 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schaback, R.: Unsymmetric meshless methods for operator equations. (2006, preprint)

  28. Chan, T.F., Foulser, D.E.: Effectively well-conditioned linear systems. SIAM J. Sci. Statist. Comput. 9(6), 963–969 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  29. Christiansen, S., Hansen, P.C.: The effective condition number applied to error analysis of certain boundary collocation methods. J. Comput. Appl. Math. 54(1), 15–36 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  30. Christiansen, S., Saranen, J.: The conditioning of some numerical methods for first kind boundary integral equations. J. Comput. Appl. Math. 67(1), 43–58 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  31. Banoczi, J.M., Chiu, N.-C., Cho, G.E., Ipsen, I.C.F.: The lack of influence of the right-hand side on the accuracy of linear system solution. SIAM J. Sci. Comput. 20(1), 203–227 (1998)

    Article  MathSciNet  Google Scholar 

  32. Huang, H.T., Li, Z.C.: Effective condition number and superconvergence of the Trefftz method coupled with high order FEM for singularity problems. Eng. Anal. Bound. Elem. 30(4), 270–283 (2006)

    Article  Google Scholar 

  33. Li, Z.-C., Chien, C.-S., Huang, H.-T.: Effective condition number for finite difference method. J. Comput. Appl. Math. 198(1), 208–235 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Cheng, A.H.-D., Golberg, M.A., Kansa, E.J., Zammito, G.: Exponential convergence and h-c multiquadric collocation method for partial differential equations. Numer. Methods Partial Differ. Equ. 19(5), 571–594 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Huang, C.-S., Lee, C.-F., Cheng, A.H.-D.: Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method. Eng. Anal. Bound. Elem. 31(7), 614–623 (2007)

    Article  Google Scholar 

  36. Driscoll, T., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43, 413–422 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49(1), 103–130 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  38. Schaback, R.: Multivariate interpolation by polynamials and radial basis functions. Constr. Approx. 21, 293–317 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  39. Madych, W.R.: Miscellaneous error bounds for multiquadric and related interpolators. Comput. Math. Appl. 24(12), 121–138 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leevan Ling.

Additional information

Communicated by Juan Manuel Peña.

Preprint submitted to Advances in Computational Mathematics.

©  All rights reserved to the authors. Generated by LaTeX on April 3, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CF., Ling, L. & Schaback, R. On convergent numerical algorithms for unsymmetric collocation. Adv Comput Math 30, 339–354 (2009). https://doi.org/10.1007/s10444-008-9071-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-008-9071-x

Keywords

Mathematics Subject Classifications (2000)

Navigation