Skip to main content
Log in

Structured linear algebra problems in adaptive optics imaging

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

A main problem in adaptive optics is to reconstruct the phase spectrum given noisy phase differences. We present an efficient approach to solve the least-squares minimization problem resulting from this reconstruction, using either a truncated singular value decomposition (TSVD)-type or a Tikhonov-type regularization. Both of these approaches make use of Kronecker products and the generalized singular value decomposition. The TSVD-type regularization operates as a direct method whereas the Tikhonov-type regularization uses a preconditioned conjugate gradient type iterative algorithm to achieve fast convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbero, S., Rubinstein, J., Thibos, L.N.: Wavefront sensing and reconstruction from gradient and Laplacian data measured with a Hartmann–Shack sensor. Opt. Lett. 31(12), 1845–1847 (2006)

    Article  Google Scholar 

  2. Bardsley, J.M.: Wavefront reconstruction methods for adaptive optics systems on ground-based telescopes. SIAM J. Matrix Anal. Appl. 30(1), 67–83 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett, H.H., Dainty, C., Lara, D.: Maximum-likelihood methods in wavefront sensing: stochastic models and likelihood functions. J. Opt. Soc. Am. A, Opt. Image Sci. Vis. 24(2), 391–414 (2007)

    Article  Google Scholar 

  4. Cannon, R.C.: Global wave-front reconstruction using Shack–Hartmann sensors. J. Opt. Soc. Am. A 12, 2031–2039 (1995)

    Article  Google Scholar 

  5. Ellerbroek, B.L.: Efficient computation of minimum-variance wave-front reconstructors with sparse matrix techniques. J. Opt. Soc. Am. A 19(9), 1803–1816 (2002)

    Article  Google Scholar 

  6. Ettl, S., Kaminski, J., Knauer, M.C., Husler, G.: Shape reconstruction from gradient data. Appl. Opt. 47(12), 2091–2097 (2008)

    Article  Google Scholar 

  7. Fried, D.L.: Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements. J. Opt. Soc. Am. 67(3), 370–375 (1977)

    Article  Google Scholar 

  8. Gilles, L.: Order-n sparse minimum-variance open-loop reconstructor for extreme adaptive optics. Opt. Lett. 28(20), 1927–1929 (2003)

    Article  Google Scholar 

  9. Golub, G.H., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  10. Goodman, J.W.: Introduction to Fourier Optics, 2nd edn. McGraw-Hill, New York (1996)

    Google Scholar 

  11. Hudgin, R.H.: Wave-front reconstruction for compensated imaging. J. Opt. Soc. Am. 67(3), 375–378 (1977)

    Article  Google Scholar 

  12. Hunt, B.R.: Matrix formulation of the reconstruction of phase values from phase differences. J. Opt. Soc. Am. 69(3), 393–399 (1979)

    Article  Google Scholar 

  13. Van Loan, C.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123(1), 85–100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Paige, C.C., Saunders, M.A.: Algorithm 583 LSQR: sparse linear equations and least squares problems. ACM Trans. Math. Softw. 8(2), 195–209 (1982)

    Article  MathSciNet  Google Scholar 

  15. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ren, H., Dekany, R.: Fast wave-front reconstruction by solving the Sylvester equation with the alternating direction implicit method. Opt. Express 12(14), 3279–3296 (2004)

    Article  Google Scholar 

  17. Ren, H., Dekany, R., Britton, M.: Large-scale wave-front reconstruction for adaptive optics systems by use of a recursive filtering algorithm. Appl. Opt. 44(13), 2626–2637 (2005)

    Article  Google Scholar 

  18. Roggemann, M., Welsh, B.: Imaging Through Turbulence. CRC Press, Boca Raton (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Nagy.

Additional information

Communicated by Rafael Bru.

Research of first author was supported by the National Science Foundation under grant DMS-0915107. Research of third author was supported by the National Science Foundation under grant DMS-0811031, and the Air Force Office of Scientific Research under grant FA9550-09-1-0487.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardsley, J.M., Knepper, S. & Nagy, J. Structured linear algebra problems in adaptive optics imaging. Adv Comput Math 35, 103–117 (2011). https://doi.org/10.1007/s10444-011-9172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9172-9

Keywords

Mathematics Subject Classifications (2010)

Navigation