Skip to main content
Log in

Gibbs phenomenon removal by adding Heaviside functions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We define a kind of spectral series to filter off completely the Gibbs phenomenon without overshooting and distortional approximation near a point of discontinuity. The construction of this series is based on the method of adding the Fourier coefficients of a Heaviside function to the given Fourier partial sums. More precisely, we prove the uniform convergence of the proposed series on the class of piecewise smooth functions. Also, we attach two numerical examples which illustrate the uniform convergence of the suggested series in comparison with the Fourier partial sums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adcock, B.: Gibbs phenomenon and its removal for a class of orthogonal expansions. BIT Numer. Math. doi:10.1007/s10543-010-0301-5

  2. Allebach, J.P.: Selected papers on digital halftoning. SPIE Milestone Series, vol. MS 154 (1999)

  3. Beckermann, B., Matos, A.C., Wielonsky, F.: Reduction of the Gibbs phenomenon for smooth functions with jumps by the ϵ-algorithm. J. Comput. App. Math. 219, 329–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyd, J.P.: Trouble with Gegenbauer reconstruction for defeating Gibbs’ phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial approximations. J. Comput. Phys. 204, 253–264 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezinski, C.: Extrapolation algorithms for filtering series of functions, and treating the Gibbs phenomenon. Numer. Algorithms 36, 309–329 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, C., Gottlieb, D., Shu, C.W.: Essentially nonoscillatory spectral Fourier method for shocks wave calculations. Math. Comput. 52, 389–410 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Driscoll, T.A., Fornberg, B.: A Padé-based algorithm for overcoming the Gibbs phenomenon. Numer. Algorithms 26, 77–92 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eckhoff, L.S.: Accurate reconstructions of functions of finite regularity from truncated Fourier series expansion. Math. Comput. 64, 671–690 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eckhoff, L.S.: On a high order numerical method for functions with singularities. Math. Comput. 67, 1063–1087 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gelb, A.: A hybrid approach to spectral reconstruction of piecewise smooth functions. J. Sci. Comput. 15(3), 293–322 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gelb, A., Gottlieb, D.: The resolution of the Gibbs phenomenon for spliced functions in one and two dimensions. Comput. Math. Appl. 33, 35–58 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gelb, A., Tanner, J.: Robust reprojection methods for the resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal. 20, 3–25 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gottlieb, D., Shu, C.: On the Gibbs phenomenon III: recovering exponential accuracy in a sub-interval from a spectral partial sum of a piecewise analytic function. SIAM J. Numer. Anal. 33, 280–290 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gottlieb, D., Shu, C.: On the Gibbs phenomenon IV: recovering exponential accuracy in a subinterval from a gegenbauer partial sum of a piecewise analytic function. Math. Comput. 64, 108–1905 (1995)

    MathSciNet  Google Scholar 

  15. Gottlieb, D., Shu, C.: On the Gibbs phenomenon V: recovering exponential accuracy from collocation point values of a piecewise analytic function. Numer. Math. 71, 511–526 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gottlieb, D., Shu, C.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39, 644–668 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gottlieb, D., Shu, C.W., Solomonoff, A., Vandeven, H.: On the Gibbs phenomenon I - recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function. J. Comput. Appl. Math. 43, 81–98 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Greene, N.: A wavelet-based method for overcoming the Gibbs phenomenon. American Conference on Applied Mathematics (’08), Harvard, Massachusetts, USA, 24–26 March 2008

  19. Greene, N.: Inverse wavelet reconstruction for resolving the Gibbs phenomenon. Int. J. CSSP 2, 73–77 (2008)

    Google Scholar 

  20. Jerri, A.J.: The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations. Kluwer Academic Publ., London (1998)

    Book  MATH  Google Scholar 

  21. Jerri, A.J.: Lanczos-like σ-factors for reducing the Gibbs phenomenon in general orthogonal expansions and other representations. J. Comput. Anal. 2, 111–127 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Jung, J.: A note on the Gibbs phenomenon with multiquadric radial basis functions. Appl. Numer. Math. 57, 213–229 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jung, J., Shizgal, B.D.: Generalization of the inverse polynomial reconstruction method in the resolution of the Gibbs phenomenon. J. Comput. Appl. Math. 172, 131–151 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jung, J., Shizgal, B.D.: On the numerical convergence with the inverse polynomial reconstruction method for the resolution of the Gibbs phenomenon. J. Comput. Phys. 224, 477–488 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kvernadze, G.: Detection of the jumps of a bounded function by its Fourier series. J. Approx. Theory 92, 167–190 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kvernadze, G., Hagstrom, T., Shapiro, H.: Locating discontinuities of a bounded function by the partial sums of its Fourier series. J. Sci. Comput. 14, 301–329 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lehmann, T.M., Goenner, C., Spitzer, K.: Survey: Interpolation methods in medical image processing. IEEE Trans. Med. Imag. 18, 1049–1075 (1999)

    Article  Google Scholar 

  28. Pan, C.: Gibbs phenomenon removal and digital filtering directly through the fast Fourier transform. IEEE Trans. Signal Process. 49, 444–448 (2001)

    Article  Google Scholar 

  29. Pasquetti, R.: On inverse methods for the resolution of the Gibbs phenomenon. J. Comput. Appl. Math. 170, 303–315 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pinkus, A., Zafrany, S.: Fourier Analysis and Integral Transforms. Cambridge Univ. Press, Cambridge (1997)

    Book  Google Scholar 

  31. Ruch, D.K., Van Fleet, P.J.: Gibbs’ phenomenon for nonnegative compactly supported scaling vectors. J. Math. Anal. Appl. 304, 370–382 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sarra, S.A.: Digital total variation filtering as postprocessing for Chebyshev pseudospectral methods for conservation laws. Numer. Algorithms 41, 17–33 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sarra, S.A.: Digital total variation filtering as postprocessing for radial basis function approximation methods. Comput. Math. Appl. 52, 1119–1130 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shizgal, S.D., Jung, J.H.: Toward the resolution of the Gibbs phenomena. J. Comput. Appl. Math. 161, 41–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. E. Tadmor. Filters, mollifiers and the computation of the Gibbs phenomenon. Acta Numer. doi:10.1017/s0962492906320016

  36. Vandeven, H.: Familly of spectral filters for discontinuous problems. J. Sci. Comput. 6, 159–192 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vosovoi, L., Israel, M., Averbuch, A.: Analysis and application of Fourier-Gegenbauer method to stiff differential equations. SIAM J. Numer. Anal. 33, 1844–1863 (1996)

    Article  MathSciNet  Google Scholar 

  38. Wangüemert-Pŕez, J.G., Godoy-Rubio, R., Ortega-Moñux, A., Molina-Fernández, I.: Removal of the Gibbs phenomenon and its application to fast-Fourier-transform-based mode solvers. J. Opt. Soc. Am. 24, 3772–3780 (2007)

    Article  Google Scholar 

  39. Zygmund, A.: Trigonometric Series. Cambridge Univ. Press, Cambridge (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Soo Rim.

Additional information

Communicated by Qiyu Sun.

The research of Kyung Soo Rim was supported in part by the grants, Seoul R&D Program: ST100025

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rim, K.S., Yun, B.I. Gibbs phenomenon removal by adding Heaviside functions. Adv Comput Math 38, 683–699 (2013). https://doi.org/10.1007/s10444-011-9255-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9255-7

Keywords

Mathematics Subject Classifications (2010)

Navigation