Skip to main content
Log in

The Hessenberg matrix and the Riemann mapping function

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider a Jordan arc Γ in the complex plane \({\mathbb C}\) and a regular measure μ whose support is Γ. We denote by D the upper Hessenberg matrix of the multiplication by z operator with respect to the orthonormal polynomial basis associated with μ. We show in this work that, if the Hessenberg matrix D is uniformly asymptotically Toeplitz, then the symbol of the limit operator is the restriction to the unit circle of the Riemann mapping function ϕ(z) which maps conformally the exterior of the unit disk onto the exterior of the support of the measure μ. We use this result to show how to approximate the Riemann mapping function for the support of μ from the entries of the Hessenberg matrix D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L.: Complex Analysis. McGraw-Hill (1979)

  2. Arvenson, W.: A Short Course on Spectral Theory, Graduate Text in Mathematics, vol. 209. Spriger (2002)

  3. Barría, J., Halmos, P.R.: Asymptotic Toeplitz operators. Trans. Am. Math. Soc. 92, 621–630 (1982)

    Article  Google Scholar 

  4. Bello, M., López, G.: Ratio and relative asymptotics of polynomials orthogonal on an arc of the unit circle. J. Approx. Theory 92, 216–244 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Böttcher, A., Grudsky, S.M.: Spectral Properties of Banded Toeplitz Matrices. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  6. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    MATH  Google Scholar 

  7. Conway, J.B.: A Course in Functional Analysis, Graduate Texts in Mathematics. Springer, New York (1985)

    Book  Google Scholar 

  8. Conway, J.B.: The Theory of Subnormal Operators. Mathematical Surveys and Monographs, vol. 36. AMS, Providence, Rhode Island (1985)

    Google Scholar 

  9. Eirmann, M., Varga, R.S.: Zeros and local extreme points of Faber polynomials asoociated with Hypocycloidal Domains. Electron. Trans. Numer. Anal. 1, 49–71 (1993)

    MathSciNet  Google Scholar 

  10. Escribano, C., Giraldo, A., Sastre, M.A., Torrano, E.: Hessenberg matrix for sums of Hermitian positive definite matrices and weighted shifts. J. Comput. Appl. Math. 236, 98–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Escribano, C., Giraldo, A., Sastre, M.A., Torrano, E.: Computing the Hessenberg matrix associated with a self-similar measure. J. Approx. Theory 163, 49–64 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feintuch, A.: On asymptotic Toeplitz and Hankel operators. Oper. Theory Adv. Appl. 41, 241–254 (1989)

    MathSciNet  Google Scholar 

  13. Freud, G.: Orthogonal Polynomials. Consultants Bureau, New York (1961)

    Google Scholar 

  14. Gaier, D.: Lectures on Complex Approximations. Birkhäuser, Boston (1985)

    Google Scholar 

  15. Geronimus, Ya.L.: Orthogonal Polynomials. Consultans Bureau, New York (1971)

    Google Scholar 

  16. Golinskii, L., Nevai, P., Van Assche, W.: Perturbation of orthogonal polynomials on an arc of the unit circle. J. Approx. Theory 83, 392–422 (1995)

    Article  MathSciNet  Google Scholar 

  17. Golinskii, L., Totik, V.: Orthogonal polynomials: from Jacobi to Simon. In: Deift, P., Gesztesy, F., Perry, P., Schlag, W. (eds.) Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, Proceedings of Symposia in Pure Mathematics, vol. 76, pp. 821–874. Amer. Math. Soc., Providence, RI (2007)

    Chapter  Google Scholar 

  18. Halmos, P.R.: Ten problems in Hilbert space. Bull. Amer. Math. Soc. 76, 887–933 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jakimovski, A., Sharma, A., Szabados, J.: Walsh Equiconvergence of Complex Interpolating Polynomials. Springer (2006)

  20. Lavréntiev, M.A., Shabat, B.V.: The Methods of Theory of Functions of Complex Variables (in Russian). Nauka, Moscow (1987)

    Google Scholar 

  21. Martínez Finkelshtein, A.: Equilibrium problems of potential theory in the complex plane. In: Marcellán, F., Van Assche, W. (eds.) Orthogonal Polynomials nad Special Functions. Lecture Notes in Mathematic, vol. 1886, pp. 79–117. Springer (2006)

  22. Máté, A., Nevai, P., Totik, V.: Asymptotics for the ratio of leading coefficients of orthonormal polynomials on the unit circle. Constr. Approx. 1, 63–69 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nevai, P.: Orthonormal Polynomials, vol. 213. Memoires. AMS, Providence (1979)

    Google Scholar 

  24. Pommerenke, C.: Univalent functions, Vandenhoeck and Ruprecht in Göttingen, Studia Mathematica (1975)

  25. Rakhmanov, E.A.: On the asymptotics of the ratio of orthogonal polynomials. Math. USSR Sb 32, 199–213 (1977)

    Article  MATH  Google Scholar 

  26. Rakhmanov, E.A.: On the asymptotics of the ratio of orthogonal polynomials II. Math. USSR Sb 47, 105–117 (1983)

    Article  Google Scholar 

  27. Simon, B.: Orthogonal Polynomials on the Unit Circle, Part1: Classical Theory. AMS Colloquium Publications, American Mathematical Society, Providence, RI (2005)

    Google Scholar 

  28. Simon, B.: Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory. AMS Colloquium Publications, American Mathematical Society, Providence, RI (2005)

    Google Scholar 

  29. Stahl, H., Totik, V.: General Orthogonal Polynomials. Cambridge University Press (1992)

  30. Szegö, G.: Orthogonal Polynomials, 1st edn., 1939, 4th edn., vol. 32. American Mathematical Society, Coloquium Publications (1975)

  31. Van Assche, W.: Rakhmanov’s theorem for orthogonal matrix polynomials on the unit circle. J. Approx. Theory 146, 227–242 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Asunción Sastre.

Additional information

Communicated by: Ivan Graham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escribano, C., Giraldo, A., Sastre, M.A. et al. The Hessenberg matrix and the Riemann mapping function. Adv Comput Math 39, 525–545 (2013). https://doi.org/10.1007/s10444-012-9291-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-012-9291-y

Keywords

Mathematics Subject Classifications (2010)

Navigation