Skip to main content
Log in

An algorithm for total variation regularized photoacoustic imaging

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Recovery of image data from photoacoustic measurements asks for the inversion of the spherical mean value operator. In contrast to direct inversion methods for specific geometries, we consider a semismooth Newton scheme to solve a total variation regularized least squares problem. During the iteration, each matrix vector multiplication is realized in an efficient way using a recently proposed spectral discretization of the spherical mean value operator. All theoretical results are illustrated by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agranovsky, M., Kuchment, P.: Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed. Inverse Problems 23(5), 2089–2102 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agranovsky, M., Kuchment, P., Kunyansky, L.: On reconstruction formulas and algorithms for the thermoacoustic tomography. In: Wang, L. V. (ed.) Photoacoustic imaging and spectroscopy, chapter 8, pp. 89–101. CRC Press, Boca Raton (2009)

  3. Agranovsky, M., Kuchment, P., Quinto, E. T.: Range descriptions for the spherical mean Radon transform. J. Funct. Anal. 248(2), 344–386 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ansorg, M., Filbir, F., Madych, W. R., Seyfried, R.: Summability kernels for circular and spherical mean data. Inverse Problems 29(1), 015002 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bovik, A.: Handbook of image and video processing. Academic (2000)

  6. Buehler, A., Rosenthal, A., Jetzfellner, T., Dima, A., Razansky, D., Ntziachristos, V.: Model-based optoacoustic inversions with incomplete projection data. Med. Phys. 38, 2011 (1694)

    Google Scholar 

  7. Burgholzer, P., Matt, G. J., Haltmeier, M., Paltauf, G.: Exact and approximate imaging methods for photoacoustic tomography using an arbitrary detection surface. Phys. Rev. E 75(4), 046706 (2007)

    Article  Google Scholar 

  8. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging (2011)

  9. Courant, R., Hilbert, D.: Methods of mathematical physics. Vol. II: Partial differential equations. (Vol. II by R. Courant.)Interscience Publishers (a division of John Wiley & Sons), New York (1962)

    Google Scholar 

  10. Filbir, F., Hielscher, R., Madych, W. R.: Reconstruction from circular and spherical mean data. Appl. Comput. Harmon. Anal. 29(1), 111–120 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Finch, D., Haltmeier, M., Rakesh: Inversion of spherical means and the wave equation in even dimensions. SIAM J. Appl. Math. 68(2), 392–412 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Görner, T., Hielscher, R., Kunis, S.: Efficient and accurate computation of spherical mean values at scattered center points. Inverse Probl. Imaging 6(4), 645–661 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Haltmeier, M.: A mollification approach for inverting the spherical mean Radon transform. SIAM J. Appl. Math. 71(5), 1637–1652 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Haltmeier, M.: Inversion of circular means and the wave equation on convex planar domains. Comput. Math. Appl. 65(7) (2013)

  15. Haltmeier, M.: Universal inversion formulas for recovering a function from spherical means. SIAM J. Math. Anal. 46(1), 214–232 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. Haltmeier, M., Scherzer, O., Burgholzer, P., Paltauf, G.: Thermoacoustic computed tomography with large planar receivers. Inverse Problems 20(5), 1663–1673 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Haltmeier, M., Scherzer, O., Zangerl, G.: A reconstruction algorithm for photoacoustic imaging based on the nonuniform FFT. IEEE Trans. Med. Imag. 28(11), 1727–1735 (2009)

    Article  Google Scholar 

  18. Haltmeier, M., Schuster, T., Scherzer, O.: Filtered backprojection for thermoacoustic computed tomography in spherical geometry. Math. Methods Appl. Sci. 28(16), 1919–1937 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Haltmeier, M., Zangerl, G.: Spatial resolution in photoacoustic tomography: effects of detector size and detector bandwidth. Inverse Problems 26(12), 125002, 14 (2010)

    Article  MathSciNet  Google Scholar 

  20. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13(3), 865–888 (2003). 2002

    Article  MATH  Google Scholar 

  21. Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28(1), 1–23 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hristova, Y., Kuchment, P., Nguyen, L.: Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse Problems 24(5), 055006, 25 (2008)

    Article  MathSciNet  Google Scholar 

  23. Huber, P. J.: Robust regression: asymptotics, conjectures and Monte Carlo. Ann. Statist. 1, 799–821 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  24. Keiner, J., Kunis, S., Potts, D.: Using NFFT 3—a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Software 36(4), Art. 19, 30 (2009)

    Article  MathSciNet  Google Scholar 

  25. Kuchment, P., Kunyansky, L.: Mathematics of thermoacoustic tomography. European J. Appl. Math. 19(2), 191–224 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kunis, S., Melzer, I.: A stable and accurate butterfly sparse Fourier transform. SIAM J. Numer. Anal. 50(3), 1777–1800 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kunyansky, L.: Reconstruction of a function from its spherical (circular) means with the centers lying on the surface of certain polygons and polyhedra. Inverse Problems 27(2), 025012, 22 (2011)

    Article  MathSciNet  Google Scholar 

  28. Kunyansky, L. A.: Explicit inversion formulae for the spherical mean Radon transform. Inverse Problems 23(1), 373–383 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kunyansky, L. A.: A series solution and a fast algorithm for the inversion of the spherical mean Radon transform. Inverse Problems 23(6), S11–S20 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Natterer, F.: Photo-acoustic inversion in convex domains. Inverse Probl. Imaging 6(2), 1–6 (2012)

    Article  MathSciNet  Google Scholar 

  31. Nesterov, Y.: Smooth minimization of non-smooth functions (2005)

  32. Palamodov, V.: Remarks on the general funk transform and thermoacoustic tomography. Inverse Probl. Imaging 4, 693–702 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Paltauf, G., Nuster, R., Haltmeier, M., Burgholzer, P.: Photoacoustic Tomography with Integrating Area and Line Detectors. In: Wang, L. V. (ed.) Photoacoustic Imaging and Spectroscopy, Optical Science and Engineering, chapter 20, pp. 251–263. CRC Press, Boca Raton (2009)

  34. Qi, L. Q., Sun, J.: A nonsmooth version of Newton’s method. Math. Programming 58(3, Ser. A), 353–367 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  35. Qian, J., Stefanov, P., Uhlmann, G., Zhao, H.: An efficient Neumann series-based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed. SIAM J. Imaging Sci. 4(3), 850–883 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Quinto, E. T.: Helgason’s support theorem and spherical Radon transforms. In: Radon transforms, geometry, and wavelets, volume 464 of Contemp. Math., pp. 249–264. Amer. Math. Soc., Providence (2008)

  37. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  38. Saad, Y., 2nd ed.: Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

  39. Stefanov, P., Uhlmann, G.: Thermoacoustic tomography with variable sound speed. Inverse Problems 25(7), 075011, 16 (2009)

    Article  MathSciNet  Google Scholar 

  40. Wang, L. V., Wu, H.: Biomedical Optics - Principles and Imaging. John Wiley & Sons Inc., Hoboken (2007)

    Google Scholar 

  41. Ying, L.: Sparse Fourier transform via butterfly algorithm. SIAM J. Sci. Comput. 31(3), 1678–1694 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  42. Zangerl, G., Scherzer, O.: Exact reconstruction in photoacoustic tomography with circular integrating detectors II: spherical geometry. Math. Methods Appl. Sci. 33(15), 1771–1782 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  43. Zangerl, G., Scherzer, O., Haltmeier, M.: Exact series reconstruction in photoacoustic tomography with circular integrating detectors. Commun. Math. Sci. 7(3), 665–678 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kunis.

Additional information

Communicated by: Leslie Greengard

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Görner, T. & Kunis, S. An algorithm for total variation regularized photoacoustic imaging. Adv Comput Math 41, 423–438 (2015). https://doi.org/10.1007/s10444-014-9364-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9364-1

Keywords

Mathematics Subject Classifications (2010)

Navigation