Skip to main content
Log in

Relation between total variation and persistence distance and its application in signal processing

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we establish the new notion of persistence distance for discrete signals and study its main properties. The idea of persistence distance is based on recent developments in topological persistence for assessment and simplification of topological features of data sets. Particularly, we establish a close relationship between persistence distance and discrete total variation for finite signals. This relationship allows us to propose a new adaptive denoising method based on persistence that can also be regarded as a nonlinear weighted ROF model. Numerical experiments illustrate the ability of the new persistence based denoising method to preserve significant extrema of the original signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almansa, A., Ballester, C., Caselles, V., Haro, G.: A TV based restoration model with local constraints. J. Sci. Comput. 34(3), 209–236 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauer, U., Lange, C., Wardetzky, M.: Optimal topological simplification of discrete functions on surfaces. Discret. Comput. Geom. 47(2), 347–377 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauer, U., Schönlieb, C.-B., Wardetzky, M.: Total variation meets topological persistence: a first encounter. AIP Conf. Proc. 1281, 1022 (2010)

    Article  Google Scholar 

  4. Bertrand, G.: On topological watersheds. J. Math. Imaging Vis. 22(2–3), 217–230 (2005)

    Article  MathSciNet  Google Scholar 

  5. Carlsson, G., Zomorodian, A., Collins, A., Guibas, L.: Persistence barcodes for shapes. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 124–135 (2004)

  6. Chambolle, A., Darbon, J.: On total variation minimization and surface evolution using parametric maximum flows. Int. J. Comput. Vis. 84, 288–307 (2009)

    Article  Google Scholar 

  7. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan, T.F., Osher, S., Shen, J.: The digital TV filter and nonlinear denoising. IEEE Trans. Image Process. 10(2), 231–241 (2001)

    Article  MATH  Google Scholar 

  9. Chen, C., Edelsbrunner, H.: Diffusion runs low on persistence fast IEEE International Conference on Computer Vision (ICCV), pp. 423–430 (2011)

  10. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discret. Comput. Geom. 37, 103–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have L p -stable persistence. Found. Comput. Math. 10, 127–139 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong, Y., Hintermüller, M., Monserrat Rincon-Camacho, M.: Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vis. 40, 82–104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discret. Comput. Geom. 28, 511–533 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grasmair, M.: The equivalence of the taut string algorithm and BV-regularization. J. Math. Imaging Vision 27, 59–66 (2007)

    Article  MathSciNet  Google Scholar 

  15. Grasmair, M.: Locally adaptive total variation regularization, SSVM, Lecture Notes in Computer Science, vol. 5567, pp. 331–342. Springer, Berlin (2009)

  16. Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms, and parallelization strategies. Fundam. Inform. 41, 187–228 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Strong, D.M., Aujol, J.-F., Chan, T.F.: Scale recognition, regularization parameter selection, and Meyer’s G norm in total variation regularization. Multiscale Model. Simul. 5(1), 273–303 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Strong, D.M., Chan, T.F.: Spatially and scale adaptive total variation based regularization and anisotropic diffusion in image processing. Diffusion in Image Processing, UCLA Math Department CAM Report 96-46 (1996)

  20. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discret. Comput. Geom. 33(2), 249–274 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerlind Plonka.

Additional information

Communicated by: Tomas Sauer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plonka, G., Zheng, Y. Relation between total variation and persistence distance and its application in signal processing. Adv Comput Math 42, 651–674 (2016). https://doi.org/10.1007/s10444-015-9438-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9438-8

Keywords

Mathematics Subject Classifications (2010)

Navigation