Skip to main content
Log in

An interface-fitted adaptive mesh method for elliptic problems and its application in free interface problems with surface tension

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This work presents a novel two-dimensional interface-fitted adaptive mesh method to solve elliptic problems of jump conditions across the interface, and its application in free interface problems with surface tension. The interface-fitted mesh is achieved by two operations: (i) the projection of mesh nodes onto the interface and (ii) the insertion of mesh nodes right on the interface. The interface-fitting technique is combined with an existing adaptive mesh approach which uses addition/subtraction and displacement of mesh nodes. We develop a simple piecewise linear finite element method built on this interface-fitted mesh and prove its almost optimal convergence for elliptic problems with jump conditions across the interface. Applications to two free interface problems, a sheared drop in Stokes flow and the growth of a solid tumor, are presented. In these applications, the interface surface tension serves as the jump condition or the Dirichlet boundary condition of the pressure, and the pressure is solved with the interface-fitted finite element method developed in this work. In this study, a level-set function is used to capture the evolution of the interface and provide the interface location for the interface fitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amberg, G.: Semisharp phase field method for quantitative phase change simulations. Phys. Rev. Lett. 91(265), 505 (2003)

    Google Scholar 

  2. Anderson, A., Zheng, X., Cristini, V.: Adaptive unstructured volume remeshing-I: the method. J. Comp. Phys. 208, 616–625 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuska, I.: The finite element method for elliptic equations with discontinuous coefficients. Computing 5, 207–213 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barth, T., Sethian, J.: Numerical schemes for the hamilton-jacobi and level set equations on triangulate domains. J. Comp. Phys. 145, 1–40 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Basting, S., Prignitz, R.: An interface-fitted subspace projection method for finite element simulations of particulate flows. Comput. Methods Appl. Mech. Engrg. 267, 133–149 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Basting, S., Weismann, M.: A hybrid level set/front tracking approach for finite element simulations of two-phase flows. J. Comput. Appl. Math. 270, 471–483 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beale, J., Layton, A.: On the accuracy of finite difference methods for elliptic problems with interfaces. Commun. Appl. Math. Comput. Sci. 1, 91–119 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boyer, F.: A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids 31, 41–68 (2002)

    Article  MATH  Google Scholar 

  9. Brackbill, J., Kothe, D., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bramble, J., King, J.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6, 109–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang, Y., Hou, T., Merriman, B., Osher, S.: A level set formulation of eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys., 124 (1996)

  12. Chen, T., Strain, J.: Piecewise-polynomial discretization and krylov-accelerated multigrid for elliptic interface problems. J. Comp. Phys. 227(16), 7503–7542 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79, 175–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chern, I., Shu, Y.: A coupling interface method for elliptic interface problems. J. Comp. Phys. 225(2), 2138–2174 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ciarlet, P.: The finite element method for elliptic problems North-Holland (1978)

  16. Cristini, V., Blawzdziewicz, J., Loewenberg, M.: An adaptive mesh algorithm for evolving surfaces: simulations of drop breakup and coalescence. J. Comp. Phys. 168, 445 (2001)

    Article  MATH  Google Scholar 

  17. Cristini, V., Lowengrub, J., Nie, Q.: Nonlinear simulation of tumor growth. J. Math. Biol. 46, 191–224 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dunavant, D.A.: High degree efficient symmetrical gaussian quadrature rules for the triangle. Int. J. Numer. Meth. Eng. 21(6), 1129–1148 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ewing, R., Li, Z., Lin, T., Lin, Y.: The immersed finite volume element methods for the elliptic interface problems. Math. Comput. Simulations 50, 63–76 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fedkiw, R., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comp. Phys. 152, 457–492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fries, T.P., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Meth. Eng. 84(3), 253–304 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Ginzburg, I., Wittum, G.: Two-phase flows on interface refined grids modeled with vof, staggered finite volumes, and spline interpolants. J. Comp. Phys. 166, 302–335 (2001)

    Article  MATH  Google Scholar 

  23. Girault, V., Raviart, P.: Finite element approximation of the Navier-Stokes equations. Springer (1979)

  24. Gong, Y., Li, B., Li, Z.: Immersed-interface finite-element method for elliptic interface problems with non-homogeneous jump conditions. SIAM J. Numer. Anal. 46, 472–495 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Greenspan, H.: On the growth and stability of cell cultures and solid tumors. J. Theor. Biol. 56, 229–242 (1976)

    Article  MathSciNet  Google Scholar 

  26. Guyomarc’h, G., Lee, C.O., Jeon, K.: A discontinuous galerkin method for elliptic interface problems with application to electroporation. Commun. Numer. Methods Eng. 25(10), 991–1008 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hou, S., Liu, X.D.: A numerical method for solving variable coefficient elliptic equation with interfaces. J. Comp. Phys. 202, 411–445 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jaeger, M., Carin, M.: The front-tracking ale method: application to a model of the freezing of cell suspensions. J. Comp. Phys. 179, 704–735 (2002)

    Article  MATH  Google Scholar 

  29. Johnston, H., Liu, J.G.: Accurate, stable and efficient navierstokes solvers based on explicit treatment of the pressure term. J. Comp. Phys. 199, 221–259 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible cahn-hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454, 2617–2654 (1998)

  31. Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S.: Modelling merging and fragmentation in multiphase flows with surfer. J. Comp. Phys. 113, 134 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. LeVeque, R., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31, 1019–1044 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. LeVeque, R., Li, Z.: Immersed interface methods for stokes flow with elastic boundaries or surface tension. SIAM J. Sci. Comput. 18, 709–735 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, B., Shopple, J.: An interface-fitted finite element level set method with application to solidification and solvation. Commun. Comput. Phys. 10, 32–56 (2011)

    Article  MathSciNet  Google Scholar 

  35. Li, J., Melenk, J., Wohlmuth, B., Zou, J.: Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60 (1-2), 19–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, X., Lowengrub, J., Rath, A., Voigt, A.: Solving pdes in complex geometries: a diffuse domain approach. Commun. Math. Sci. 7(1), 81–107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, Z.: The immersed interface method using a finite element formulation. Appl. Numer. Math. 27, 253–267 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, Z., Lin, T., Wu, X.: New cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96, 61–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, X.D., Sideris, T.: Convergence of the ghost fluid method for elliptic equations with interfaces. Math. Comput. 72, 1731–46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lock, N., Jaeger, M., Medale, M., Occelli, R.: Local mesh adaption technique for front tracking problems. Int. J. Numer. Methods Fluids 28, 719 (1998)

    Article  MATH  Google Scholar 

  41. Macklin, P., Lowengrub, J.: Evolving interfaces via gradients of geometry-dependent interior poisson problems: application to tumor growth. J. Comp. Phys. 203, 191–220 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mashayek, F., Ashgriz, N.: A hybrid finite-element-volume-of-fluid method for simulating free surface flows and interfaces. Int. J. Numer. Methods Fluids 20, 1363 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mayo, A.: The fast solution of poissons and the biharmonic equations on irregular regions. SIAM J. Numer. Anal. 21, 285–299 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mayo, A.: The rapid evaluation of volume integrals of potential theory on general regions. J. Comp. Phys. 100(2), 236–245 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mayo, A., Greenbaum, A.: Fast parallel iterative solution of poissons and the biharmonic equations on irregular regions. SIAM J. Sci. Stat. Comput., 101–118 (1992)

  46. Moes, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Eng. 46, 131–150 (1999)

    Article  MATH  Google Scholar 

  47. Mu, L., Wang, J., Wei, G., Ye, X., Zhao, S.: Weak galerkin methods for second order elliptic interface problems. J. Comp. Phys. 250, 106–125 (2013)

    Article  MathSciNet  Google Scholar 

  48. Nguyen, V.T., Peraire, J., Cheong, K., Persson, P.O.: A discontinuous galerkin front tracking method for two-phase flows with surface tension. Comput. Fluids 39, 1–14 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Oevermann, M., Klein, R.: A cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces. J. Comp. Phys. 219, 749–769 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Oevermann, M., Scharfenberg, C., Klein, R.: A sharp interface finite volume method for elliptic equations on cartesian grids. J. Comp. Phys. 228(14), 5184–5206 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces. Springer (2002)

  52. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  53. Peskin, C.: Numerical analysis of blood flow in the heart. J. Comp. Phys. 25 (3), 220–252 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  54. Peskin, C.: The immersed boundary method. Acta Numerica 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  55. Popinet, S., Zaleski, S.: A front-tracking algorithm for accurate representation of surface tension. Int. J. Numer. Fluids 30, 775–793 (1999)

    Article  MATH  Google Scholar 

  56. Qian, J., Zhang, Y.T., Zhao, H.K.: Fast sweeping methods for eikonal equations on triangular meshes. SIAM J. Numer. Anal. 45, 83–107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Rangarajan, R., Lew, A.J.: Universal Meshes: A new paradigm for computing with nonconforming triangulations ArXiv e-prints (2012)

  58. Roitberg, J., Seftel, Z.: A theorem on homeomorphisms for elliptic systems and its applications. Mathematics of the USSR-Sbornik 7(3), 439 (1969)

    Article  Google Scholar 

  59. Sato, T., Richardson, S.: Numerical simulation method for viscoelastic flow with free surfaces- fringe element generation method. Int. J. Numer. Methods Fluids 26, 555 (1994)

    Article  MATH  Google Scholar 

  60. Sethian, J.: Level Set Methods and Fast Marching Methods : Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press (1999)

  61. Sethian, J., Vladimirsky, A.: Fast methods for the eikonal and related hamilton-jacobi equations on unstructured mesh. PNAS 97, 5699–5703 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  62. Stein, E.: Singular integrals and differentiability properties of functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  63. Thompson, J., Soni, K.B.K., Weatherill, N. (eds.): Handbook of Grid Generation, 1edn. CRC-press (1998)

  64. Thompson, J., Thames, F., Mastin, C.: Automatic numerical generation of body tted curvilinear coordinate systems for fields containing any number of arbitrary two-dimensional bodies. J. Comp. Phys. 15, 299–319 (1974)

    Article  MATH  Google Scholar 

  65. Tornberg, A.K., Engquist, B.: Regularization techniques for numerical approximation of pdes with singularities. J. Sci. Comput. 19, 527–552 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  66. Unverdi, S., Tryggvason, G.: A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 25–37 (1992)

    Article  MATH  Google Scholar 

  67. Xia, K., Zhan, M., Wan, D., Wei, G.W.: Adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients. J. Comp. Phys. 231(4), 1440–1461 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  68. Yang, B., Prosperetti, A.: A second-order boundary-fitted projection method for free-surface flow computations. J. Comp. Phys. 213(2), 574–590 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  69. Yu, S., Wei, G.: Three-dimensional matched interface and boundary (mib) method for treating geometric singularities. J. Comput. Phys. 227, 602–632 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhao, S., Wei, G.: High order fdtd methods via derivative matching for maxwells equations with material interfaces. J. Comput. Phys. 200, 60–103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  71. Zhao, S., Wei, G., Xiang, Y.: Dsc analysis of free-edged beams by an iteratively matched boundary method. J. Sound. Vibrat. 284, 487–493 (2005)

    Article  MATH  Google Scholar 

  72. Zheng, X., Lowengrub, J., Anderson, A., Cristini, V.: Adaptive unstructured volume remeshing-II: Application to two- and three-dimensional level-set simulations of multiphase flow. J. Comp. Phys. 208, 626–650 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  73. Zhou, Y., Wei, G.: On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method. J. Comput. Phys. 219, 228–246 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  74. Zhou, Y., Zhao, S., Feig, M., Wei, G.: High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources. J. Comp. Phys. 213, 1–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  75. Zinchenko, A., Rother, M., Davis, R.H.: A novel boundary-integral algorithm for viscous interaction of deformable drops. Phys. Fluids 9(6), 1494–1511 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Zheng.

Additional information

Communicated by: Axel Voigt

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Lowengrub, J. An interface-fitted adaptive mesh method for elliptic problems and its application in free interface problems with surface tension. Adv Comput Math 42, 1225–1257 (2016). https://doi.org/10.1007/s10444-016-9460-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-016-9460-5

Keywords

Mathematics Subject Classification (2010)

Navigation