Skip to main content
Log in

Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear Schrödinger equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we focus on a linearized backward Euler scheme with a Galerkin finite element approximation for the time-dependent nonlinear Schrödinger equation. By splitting an error estimate into two parts, one from the spatial discretization and the other from the temporal discretization, we obtain unconditionally optimal error estimates of the fully-discrete backward Euler method for a generalized nonlinear Schrödinger equation. Numerical results are provided to support our theoretical analysis and efficiency of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Segue, H.: Solitons and the inverse scattering transformation philadelphia: SIAM (1981)

  2. Akrivis, G.D., Dougalis, V.A., Karakashian, O.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, W.Z., Cai, Y.Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50(2), 492–521 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biswas, A., Konar, S.: Introduction to non-Kerr law optical solitons, CRC Press, Boca Raton FL (2006)

  5. Bulut, H., Pandir, Y., Demiray, T.: Exact Solutions of Nonlinear Schr odinger’s Equation with Dual Power-Law Nonlinearity by Extended Trial Equation Method. Waves Random Complex Media 244, 439–451 (2014)

    Article  Google Scholar 

  6. Delfour, M., Fortin, M., Payre, G.: Finite difference solution of a nonlinear Schrödinger equation. Comput. Phys. 44, 277–288 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dupont, T., Fairweather, G., Johnson, J.P.: Three-level Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 11, 392–410 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ebaid, A., Khaled, S.M.: New types of exact solutions for nonlinear Schrdinger equation with cubic nonlinearity. J. Comput. Appl. Math. 235, 1984–1992 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Freefem++, version 14.3, http://www.freefem.org/

  10. Feit, M.D., Fleck, J.A., Steiger, A.: Solution of the Schrödinger equation by a spectral method. J. comput. Phy. 47, 412–433 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, H., Li, B., Sun, W.: Optimal error estimates of linearized Crank-Nicolson Galerkin FEMs for the time-dependent Ginzburg-Landau equations in superconductivity. SIAM J. Numer. Anal. 52, 1183–1202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hasegawa, A., Kodama, Y.: Solitons in optical communications new york: Oxford university press (1995)

  13. He, Y: The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data. Math. Comput. 77, 2097–2124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. He, Y., Li, J.: Penalty finite element method based on Euler Implicit/ Explicit Scheme for the Time-Dependent Navier-Stokes equations. J. Comput. Appl. Mathe. 235, 708–725 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 2(35), 767–801 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, Y., Sun, W.: Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations. Math. Comp. 76, 115–136 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hou, Y., Li, B., Sun, W.: Error analysis of splitting Galerkin methods for heat and sweat transport in textile materials. SIAM J. Numer. Anal. 51, 88–111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, L.X., Wang, M.: The (G’/G)-expansion method and travelling wave solutions for a high-order nonlinear Schrödinger equation. Appl. Math. Comput. 208(2), 440–445 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, B.: Mathematical Modeling, Analysis and Computation for Some Complex and Nonlinear Flow Problems. PhD Thesis, City University of Hong Kong, Hong Kong (2012)

    Google Scholar 

  23. Malomed, B.: Nonlinear Schrödinger equation with wave operator, in Scot, Alwyn, Encyclopedia of Nonlinear Science, New York: Routledge (2005)

  24. Mu, M., Huang, Y.: An alternating Crank-Nicolson method for decoupling the Ginzburg-Landau equations. SIAM J. Numer. Anal. 35, 1740–1761 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Newell, A.C.: Solitons in mathematics and physics, SIAM. Philadelphia (1985)

  26. Reichel, B., Leble, S: On convergence and stability of a numerical scheme of coupled nonlinear Schrödinger equations. Comput. Math. Appl. 55, 745–759 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sanz-Serna, J.M.: Methods for the numerical solution of the nonlinear Schrödinger equation. Math. Comput. 43(167), 21–27 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Optimal, Tourigny Y.: H 1 estimates for two time-discrete galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal. 11, 509–523 (1991)

    Article  MathSciNet  Google Scholar 

  29. Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  30. Zhang, H.: Extended Jacobi elliptic function expansion method and its applications. Commun. Nonlinear Sci. Numer. Simul. 12(5), 627–635 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zouraris, G.: On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equaion. Math. Model. Numer. Anal. 35(3), 389–405 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangxin Chen.

Additional information

Communicated by: Raymond H. Chan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Li, J. & Chen, Z. Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear Schrödinger equation. Adv Comput Math 42, 1311–1330 (2016). https://doi.org/10.1007/s10444-016-9463-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-016-9463-2

Keywords

Mathematics Subject Classification (2010)

Navigation