Skip to main content
Log in

Reducing the ill conditioning in the method of fundamental solutions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The method of fundamental solutions (MFS) is a meshless method for solving boundary value problems with some partial differential equations. It allows to obtain highly accurate approximations for the solutions assuming that they are smooth enough, even with small matrices. As a counterpart, the (dense) matrices involved are often ill-conditioned which is related to the well known uncertainty principle stating that it is impossible to have high accuracy and good conditioning at the same time. In this work, we propose a technique to reduce the ill conditioning in the MFS, assuming that the source points are placed on a circumference of radius R. The idea is to apply a suitable change of basis that provides new basis functions that span the same space as the MFS’s, but are much better conditioned. In the particular case of circular domains, the algorithm allows to obtain errors close to machine precision, with condition numbers of order O(1), independently of the number of points sources and R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.J.S.: On the choice of source points in the method of fundamental solutions. Eng. Anal. Bound. Elem. 33, 1348–1361 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, C.J.S., Antunes, P.R.S.: The method of fundamental solutions applied to the calculation of eigenfrequencies and eigenmodes of 2D simply connected shapes. Comput. Mater. Continua 2, 251–266 (2005)

    Google Scholar 

  3. Alves, C.J.S., Antunes, P.R.S.: The method of fundamental solutions applied to some inverse eigenproblems. SIAM J. Sci. Comp. 35, A1689–A1708 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alves, C.J.S., Leitão, V.M.A.: Crack analysis using an enriched MFS domain decomposition technique. Eng. Anal. Boundary Elem. 30(3), 160–6 (2006)

    Article  MATH  Google Scholar 

  5. Barnett, A.H., Betcke, T.: Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys. 227(14), 7003–26 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bogomolny, A.: Fundamental solutions method for elliptic boundary value problems. SIAM J. Numer. Anal. 22(4), 644–669 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, C.S., Cho, H.A., Golberg, M.A.: Some comments on the ill-conditioning of the method of fundamental solutions. Eng. Anal. Bound. Elem. 30, 405–410 (2006)

    Article  MATH  Google Scholar 

  8. Chen, J.T., Wu, C.S., Lee, Y.T., Chen, K.H.: On the equivalence of the Trefftz method and method of fundamental solutions for Laplace and biharmonic equations. Comput. Math. Appl. 57, 851–79 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9, 69–95 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30(1), 60–80 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hon, Y.C., Li, M.: A discrepancy principle for the source points location in using the MFS for solving the BHCP. Int. J. Comput. Methods 6, 181–197 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Katsurada, M.: A mathematical study of the charge simulation method. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36(1), 135–162 (1989)

    MathSciNet  MATH  Google Scholar 

  13. Katsurada, M.: Charge simulation method using exterior mapping functions. Jpn. J. Ind. Appl. Math. 11(1), 47–61 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kitagawa, T.: On the numerical stability of the method of fundamental solution applied to the Dirichlet problem. Japan J. Appl. Math. 5, 123–33 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kupradze, V.D., Aleksidze, M.A.: The method of functional equations for the approximate solution of certain boundary value problems; U.S.S.R. Comput. Math. Math. Phys. 4, 82–126 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mathon, R., Johnston, R.L.: The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J. Numer. Anal. 14, 638–50 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ramachandran, P.A.: Method of fundamental solutions: singular value decomposition analysis. Commun. Numer. Methods Eng. 18, 789–801 (2002)

    Article  MATH  Google Scholar 

  18. Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3, 251–64 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Smyrlis, Y.-S.: Applicability and applications of the method of fundamental solutions. Math. Comp. 78, 1399–1434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Smyrlis, Y.-S., Karageorghis, A.: Some aspects of the method of fundamental solutions for certain harmonic problems. J. Sci. Comput. 16(3), 341–71 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Smyrlis, Y.-S., Karageorghis, A.: Efficient implementation of the MFS: the three scenarios. J. Comput. Appl. Math. 227(1), 83–92 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research was partially supported by FCT, Portugal, through the program “Investigador FCT” with reference IF/00177/2013 and the scientific project PTDC/MAT-CAL/4334/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro R. S. Antunes.

Additional information

Communicated by: Stephen Wright

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes, P.R.S. Reducing the ill conditioning in the method of fundamental solutions. Adv Comput Math 44, 351–365 (2018). https://doi.org/10.1007/s10444-017-9548-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9548-6

Keywords

Mathematics Subject Classification (2010)

Navigation