Skip to main content
Log in

Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We present in this paper a spectrally accurate numerical method for computing the spherical/vector spherical harmonic expansion of a function/vector field with given (elemental) nodal values on a spherical surface. Built upon suitable analytic formulas for dealing with the involved highly oscillatory integrands, the method is robust for high mode expansions. We apply the numerical method to the simulation of three-dimensional acoustic and electromagnetic multiple scattering problems. Various numerical evidences show that the high accuracy can be achieved within reasonable computational time. This also paves the way for spectral-element discretization of 3D scattering problems reduced by spherical transparent boundary conditions based on the Dirichlet-to-Neumann map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. A Wiley-Interscience Publication. Wiley, New York (1984). Reprint of the 1972 edition, Selected Government Publications

  2. Acosta, S., Villamizar, V.: Coupling of Dirichlet-to-Neumann boundary condition and finite difference methods in curvilinear coordinates for multiple scattering. J. Comput. Phys. 229(15), 5498–5517 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alpert, B., Greengard, L., Hagstrom, T.: Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation. SIAM J. Numer. Anal. 37(4), 1138–1164 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amirkulova, F. A., Norris, A.N.: Acoustic multiple scattering using recursive algorithms. J. Comput. Phys. 299, 787–803 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bateman, H: Tables of integral transforms. In: Erdelyi, A (ed.) California Institute of Technology Bateman Manuscript Project, p 1. McGraw-Hill, New York (1954)

  6. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications Inc. (2001)

  7. Chew, W. C.: Recurrence relations for three-dimensional scalar addition theorem. J. Electromagnet. Wave. 6(1-4), 133–142 (1992)

    Article  Google Scholar 

  8. Danos, M., Maximon, L.C.: Multipole matrix elements of the translation operator. J. Math Phys. 6(5), 766–778 (1965)

    Article  MathSciNet  Google Scholar 

  9. Demkowicz, L., Shen, J.: A few new (?) facts about infinite elements. Comp. Meth. Appl. Mech. Engng. 195(29), 3572–3590 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fournier, A.: Exact calculation of Fourier series in nonconforming spectral-element methods. J. Comput. Phys. 215, 1–5 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences: A Scalar, Vectorial, and Tensorial Setup. Springer Verlag (2009)

  12. Garate, G., Vadillo, E. G., Santamaria, J., Pardo, D.: Solution of the 3D, Helmholtz equation in exterior domains using spherical harmonic decomposition. Comput. Math. Appl. 64(8), 2520–2543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giraldo, F. X., Rosmond, T.E: A scalable spectral element Eulerian atmospheric model (SEE-AM) for NWP: Dynamical core tests. Mon. Weather Rev. 132(1), 133–153 (2004)

    Article  Google Scholar 

  14. Grote, M. J., Kirsch, C.: Dirichlet-to-Neumann, boundary conditions for multiple scattering problems. J. Comput. Phys. 201(2), 630–650 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gumerov, N. A., Duraiswami, R.: Recursions for the computation of multipole translation and rotation coefficients for the 3D Helmholtz equation. SIAM J. Sci. Comput. 25(4), 1344–1381 (2004)

    Article  MATH  Google Scholar 

  16. Gumerov, N. A., Duraiswami, R.: Computation of scattering from clusters of spheres using the fast multipole method. J. Acoust. Soc Am. 117(4), 1744–1761 (2005)

    Article  Google Scholar 

  17. Hagstrom, T., Lau, S.: Radiation boundary conditions for Maxwell’s equations: a review of accurate time-domain formulations. J. Comput. Math. 25(3), 305–336 (2007)

    MathSciNet  Google Scholar 

  18. Hamid, A.K., Ciric, I.R., Hamid, M.: Iterative solution of the scattering by an arbitrary configuration of conducting or dielectric spheres. In: IEE Proc. H Microwaves Antenn. Propag., vol. 138, pp. 565–572. IET (1991)

  19. Hill, E. L.: The theory of vector spherical harmonics. Amer. J. Phys. 22, 211–214 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, K., Li, P. J.: A two-scale multiple scattering problem. Multiscale Model Simul. 8(4), 1511–1534 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, X., Zheng, W.Y.: Adaptive perfectly matched layer method for multiple scattering problems. Comput. Meth. Appl. Mech. Eng. 201, 42–52 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Koc, S., Chew, W.C.: Calculation of acoustical scattering from a cluster of scatterers. J. Acoust. Soc. Am. 103(2), 721–734 (1998)

    Article  Google Scholar 

  23. Martin, P. A.: Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles. Cambridge University Press (2006)

  24. Morse, P. M., Feshbach, H.: Methods of Theoretical Physics. 2 volumes. McGraw-Hill Book Co. Inc., New York (1953)

    MATH  Google Scholar 

  25. Nédélec, J.C.: Acoustic and Electromagnetic Equations, volume 144 of Applied Mathematical Sciences. Springer-Verlag, New York (2001). Integral representations for harmonic problems

    Book  Google Scholar 

  26. Phillips, N.: A coordinate system having some special advantages for numerical forecasting. J. Atmos. Sci. 14(2), 184–185 (1957)

    Google Scholar 

  27. Rokhlin, V., Tygert, M.: Fast algorithms for spherical harmonic expansions. SIAM J. Sci. Comput. 27(6), 1903–1928 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sadourny, R.: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Weather Rev. 100(2), 136–144 (1972)

    Article  Google Scholar 

  29. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications, volume 41 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2011)

    Book  Google Scholar 

  30. Shen, J., Wang, L.L.: Analysis of a spectral-G,alerkin approximation to the Helmholtz equation in exterior domains. SIAM J. Numer. Anal. 45, 1954–1978 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Song, L. J., Zhang, J., Wang, L.L.: A multi-domain spectral IPDG method for Helmholtz equation with high wave number. J. Comput. Math. 31(2), 107–136 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Suda, R., Takami, M.: A fast spherical harmonics transform algorithm. Math. Comput. 71(238), 703–715 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Swarztrauber, P. N., Spotz, W.F.: Generalized discrete spherical harmonic transforms. J. Comput. Phys. 159(2), 213–230 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Szegö, G.: Orthogonal Polynomials, 4th edn. vol. 23. AMS Coll Publ. (1975)

  35. Xu, Y.L.: Fast evaluation of the gaunt coefficients. Math. Comp. 65(216), 1601–1612 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, Z., Wang, L. L., Rong, Z., Wang, B., Zhang, B.: Seamless integration of global Dirichlet-to-Neumann boundary condition and spectral elements for transformation electromagnetics. Comput. Methods Appl. Mech. Eng. 301, 137–163 (2016)

    Article  MathSciNet  Google Scholar 

  37. Young, J. W., Bertrand, J.C.: Multiple scattering by two cylinders. J. Acoust. Soc. Am. 58(6), 1190–1195 (1975)

    Article  Google Scholar 

  38. Fang, Q. R., Nicholls, D. P., Shen, J.: A stable, high-order method for three-dimensional, bounded-obstacle, acoustic scattering. J. Comput. Phys. 224(2), 1145–1169 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nicholls, D. P., Shen, J.: A stable high-order method for two-dimensional bounded-obstacle scattering. SIAM J. Sci. Comput. 28(4), 1398–1419 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ma, L. N., Shen, J., Wang, L.L.: Spectral approximation of time-harmonic Maxwell equations in three-dimensional exterior domains. Int. J. Numer. Anal. Model. 12(2), 366–383 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research of Bo Wang is partially supported by NSFC Grants (11341002, 11401206 and 11771137), the Construct Program of the Key Discipline in Hunan Province and a Scientific Research Fund of Hunan Provincial Education Department (No. 16B154). Ziqing Xie is partially supported by NSFC (91430107, 11171104 and 11771138) and the Construct Program of the Key Discipline in Hunan Province.

The research of Bo Wang and Li-Lian Wang is supported by a Singapore MOE AcRF Tier 1 Grant (RG 27/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Lian Wang.

Additional information

Communicated by: Francesca Rapetti

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Wang, LL. & Xie, Z. Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids. Adv Comput Math 44, 951–985 (2018). https://doi.org/10.1007/s10444-017-9569-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9569-1

Keywords

Mathematics Subject Classification (2010)

Navigation