Skip to main content
Log in

A finite-element coarse-grid projection method for incompressible flow simulations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Coarse grid projection (CGP) methodology is a novel multigrid method for systems involving decoupled nonlinear evolution equations and linear elliptic Poisson equations. The nonlinear equations are solved on a fine grid and the linear equations are solved on a corresponding coarsened grid. Mapping operators execute data transfer between the grids. The CGP framework is constructed upon spatial and temporal discretization schemes. This framework has been established for finite volume/difference discretizations as well as explicit time integration methods. In this article we present for the first time a version of CGP for finite element discretizations, which uses a semi-implicit time integration scheme. The mapping functions correspond to the finite-element shape functions. With the novel data structure introduced, the mapping computational cost becomes insignificant. We apply CGP to pressure-correction schemes used for the incompressible Navier-Stokes flow computations. This version is validated on standard test cases with realistic boundary conditions using unstructured triangular meshes. We also pioneer investigations of the effects of CGP on the accuracy of the pressure field. It is found that although CGP reduces the pressure field accuracy, it preserves the accuracy of the pressure gradient and thus the velocity field, while achieving speedup factors ranging from approximately 2 to 30. The minimum speedup occurs for velocity Dirichlet boundary conditions, while the maximum speedup occurs for open boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guermond, J., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195(44), 6011–6045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22(104), 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  3. Temam, R.: Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II). Arch. Ration. Mech. Anal. 33(5), 377–385 (1969)

    Article  MATH  Google Scholar 

  4. Shen, J.: On error estimates of projection methods for Navier-Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29(1), 57–77 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hugues, S., Randriamampianina, A.: An improved projection scheme applied to pseudospectral methods for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 28(3), 501–521 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jobelin, M., Lapuerta, C., Latché, J.-C., Angot, P., Piar, B.: A finite element penalty–projection method for incompressible flows. J. Comput. Phys. 217 (2), 502–518 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fedkiw, R., Stam, J., Jensen, H.W.: Visual simulation of smoke. In: Proceedings of the 28th annual Conference on Computer Graphics and Interactive Techniques, pp. 15–22. ACM (2001)

  8. Korczak, K.Z., Patera, A.T.: An isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry. J. Comput. Phys. 62 (2), 361–382 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guermond, J.-L., Minev, P., Shen, J.: Error analysis of pressure-correction schemes for the time-dependent Stokes equations with open boundary conditions. SIAM J. Numer. Anal. 43(1), 239–258 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Reusken, A.: Fourier analysis of a robust multigrid method for convection-diffusion equations. Numer. Math. 71(3), 365–397 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Filelis-Papadopoulos, C.K., Gravvanis, G.A., Lipitakis, E.A.: On the numerical modeling of convection-diffusion problems by finite element multigrid preconditioning methods. Adv. Eng. Softw. 68, 56–69 (2014)

    Article  Google Scholar 

  12. Gupta, M.M., Kouatchou, J., Zhang, J.: A compact multigrid solver for convection-diffusion equations. J. Comput. Phys. 132(1), 123–129 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gupta, M.M., Kouatchou, J., Zhang, J.: Comparison of second-and fourth-order discretizations for multigrid Poisson solvers. J. Comput. Phys. 132(2), 226–232 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, J.: Fast and high accuracy multigrid solution of the three dimensional Poisson equation. J. Comput. Phys. 143(2), 449–461 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lentine, M., Zheng, W., Fedkiw, R.: A novel algorithm for incompressible flow using only a coarse grid projection. In: ACM Transactions on Graphics (TOG), vol. 4, p 114. ACM (2010)

  16. San, O., Staples, A.E.: A coarse-grid projection method for accelerating incompressible flow computations. J. Comput. Phys. 233, 480–508 (2013)

    Article  MathSciNet  Google Scholar 

  17. San, O., Staples, A.E.: An efficient coarse grid projection method for quasigeostrophic models of large-scale ocean circulation. Int. J. Multiscale Comput. Eng. 11(5), 463–495 (2013)

  18. Jin, M., Liu, W., Chen, Q.: Accelerating fast fluid dynamics with a coarse-grid projection scheme. HVAC&R Res 20(8), 932–943 (2014)

    Article  Google Scholar 

  19. Losasso, F, Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. In: ACM Transactions on Graphics (TOG), vol. 3, pp. 457–462. ACM (2004)

  20. Moin, P.: Fundamentals of engineering numerical analysis. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  21. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. Amer. Math. Soc. 67(221), 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gropp, W.D., Kaushik, D.K., Keyes, D.E., Smith, B.F.: High-performance parallel implicit CFD. Parallel Comput. 27(4), 337–362 (2001)

    Article  MATH  Google Scholar 

  23. Heys, J., Manteuffel, T., McCormick, S., Olson, L.: Algebraic multigrid for higher-order finite elements. J. Comput. Phys. 204(2), 520–532 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Becker, R., Braack, M.: Multigrid techniques for finite elements on locally refined meshes. Numer. Linear Algebra Appl. 7(6), 363–379 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Reitzinger, S., Schöberl, J.: An algebraic multigrid method for finite element discretizations with edge elements. Numer. Linear Algebra Appl. 9(3), 223–238 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sampath, R.S., Biros, G.: A parallel geometric multigrid method for finite elements on octree meshes. SIAM J. Sci. Comput. 32(3), 1361–1392 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Timmermans, L., Minev, P., Van De Vosse, F.: An approximate projection scheme for incompressible flow using spectral elements. Int. J. Numer. Methods Fluids 22(7), 673–688 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wanner, G., Hairer, E.: Solving ordinary differential equations II vol 1. Springer-Verlag, Berlin (1991)

    MATH  Google Scholar 

  29. Reddy, J.N.: An introduction to the finite element method, vol. 2. McGraw-Hill, New York (1993)

    Google Scholar 

  30. Jiang, C.B., Kawahara, M.: A three-step finite element method for unsteady incompressible flows. Comput. Mech. 11(5-6), 355–370 (1993)

    Article  MATH  Google Scholar 

  31. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Revue Fr. d’automatique, Inf. Rech. Opérationnelle Anal. Numér. 8(2), 129–151 (1974)

    MathSciNet  MATH  Google Scholar 

  32. Babuška, I.: The finite element method with Lagrangian multipliers. Numerische Mathematik 20(3), 179–192 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, J., Chen, L., Nochetto, R.H.: Optimal multilevel methods for H (grad), H (curl), and H (div) systems on graded and unstructured grids. In: Multiscale, nonlinear and adaptive approximation, pp. 599–659. Springer (2009)

  34. Yserentant, H.: On the multi-level splitting of finite element spaces. Numer. Math. 49(4), 379–412 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bank, R.E., Xu, J.: An algorithm for coarsening unstructured meshes. Numer. Math. 73(1), 1–36 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hu, J.: A robust prolongation operator for non-nested finite element methods. Comput. Math. Appl. 69(3), 235–246 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Besson, J., Foerch, R.: Large scale object-oriented finite element code design. Comput. Methods Appl. Mech. Eng. 142(1), 165–187 (1997)

    Article  MATH  Google Scholar 

  38. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA. Nvidia Technical Report NVR-2008-004, Nvidia Corporation (2008)

  39. Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  40. Van der Vorst, H.A.: Iterative Krylov methods for large linear systems, vol. 13. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  41. Geuzaine, C., Remacle, J.F.: Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Taylor, G., Green, A.: Mechanism of the production of small eddies from large ones. Proc. Royal Soc. Lond. Ser. A, Math. Phys. Sci. 158(895), 499–521 (1937)

    Article  MATH  Google Scholar 

  43. Alam, J.M., Walsh, R.P., Alamgir Hossain, M., Rose, A.M.: A computational methodology for two-dimensional fluid flows. Int. J. Numer. Methods Fluids 75(12), 835–859 (2014)

    Article  MathSciNet  Google Scholar 

  44. Barton, I.: The entrance effect of laminar flow over a backward-facing step geometry. Int. J. Numer. Methods Fluids 25(6), 633–644 (1997)

    Article  MATH  Google Scholar 

  45. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59(2), 308–323 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  46. Erturk, E.: Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions. Comput. Fluids 37 (6), 633–655 (2008)

    Article  MATH  Google Scholar 

  47. Belov, A.A.: A new implicit multigrid-driven algorithm for unsteady incompressible flow calculations on parallel computers (1997)

  48. Behr, M., Hastreiter, D., Mittal, S., Tezduyar, T.: Incompressible flow past a circular cylinder: dependence of the computed flow field on the location of the lateral boundaries. Comput. Methods Appl. Mech. Eng. 123(1), 309–316 (1995)

    Article  Google Scholar 

  49. Ding, H., Shu, C., Yeo, K., Xu, D.: Simulation of incompressible viscous flows past a circular cylinder by hybrid FD scheme and meshless least square-based finite difference method. Comput. Methods Appl. Mech. Eng. 193(9), 727–744 (2004)

    Article  MATH  Google Scholar 

  50. Braza, M., Chassaing, P., Minh, H.H.: Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J. Fluid Mech. 165, 79–130 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  51. Liu, C., Zheng, X., Sung, C.: Preconditioned multigrid methods for unsteady incompressible flows. J. Comput. Phys. 139(1), 35–57 (1998)

    Article  MATH  Google Scholar 

  52. Hammache, M., Gharib, M.: A novel method to promote parallel vortex shedding in the wake of circular cylinders. Phys. Fluids A: Fluid Dyn. (1989-1993) 1 (10), 1611–1614 (1989)

    Article  Google Scholar 

  53. Rajani, B., Kandasamy, A., Majumdar, S.: Numerical simulation of laminar flow past a circular cylinder. Appl. Math. Modell. 33(3), 1228–1247 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, Z.J.: Efficient implementation of the exact numerical far field boundary condition for Poisson equation on an infinite domain. J. Comput. Phys. 153(2), 666–670 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

AK wishes to thank Dr. Michael Lentine, Dr. Peter Minev, Dr. Saad Ragab, and Dr. Omer San for helpful discussions. Moreover, AK would like to thank the reviewers for their insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kashefi.

Additional information

Communicated by: Axel Voigt

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashefi, A., Staples, A.E. A finite-element coarse-grid projection method for incompressible flow simulations. Adv Comput Math 44, 1063–1090 (2018). https://doi.org/10.1007/s10444-017-9573-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9573-5

Keywords

Mathematics Subject Classfication (2010)

Navigation