Skip to main content
Log in

Boundary integral methods for dispersive equations, Airy flow and the modified Korteweg de Vries equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we implement interface tracking methods for the evolution of 2-D curves that follow Airy flow, a curvature-dependent dispersive geometric evolution law. The curvature of the curve satisfies the modified Korteweg de Vries equation, a dispersive non-linear soliton equation. We present a fully discrete space-time analysis of the equations (proof of convergence) and numerical evidence that confirms the accuracy, convergence, efficiency, and stability of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, G., Shelley, M.: On the connection between thin vortex layers and vortex sheets. J. Fluid Mech. 215, 161–194 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beale, J.T., Hou, T.Y., Lowengrub, J.: Convergence of a boundary integral method for water waves. SIAM J. Numer. Anal. 33(5), 1797–1843 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benson, D.J.: Computational methods in lagrangian and eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99(2), 235–394 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonanno, C.: A complexity approach to the soliton resolution conjecture. J. Stat. Phys. 160(5), 1432–1448 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burchard, P., Cheng, L.-T., Merriman, B., Osher, S.: Motion of curves in three spatial dimensions using a level set approach. J. Comput. Phys. 170(2), 720–741 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  7. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  8. Ceniceros, H., Hou, T.: Convergence of a non-stiff boundary integral method for interfacial flows with surface tension. Math. Comput. Amer. Math. Soc. 67(221), 137–182 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, Y., Hou, T., Merriman, B., Osher, S.: A level set formulation of eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124(2), 449–464 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chou, K.-S., Qu, C.: Integrable equations arising from motions of plane curves. Physica D 162(1–2), 9–33 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Sharp Global Well-Posedness for KdV and modified KdV on R and T. J. Am. Math. Soc. 16(3), 705–749 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Multilinear estimates for periodic kdV equations, and applications. J. Funct. Anal. 211(1), 173–218 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Crapper, G.: Non-linear capillary waves generated by steep gravity waves. J. Fluid Mech. 40, 149–159 (1970)

    Article  Google Scholar 

  14. Dağ, İ., Dereli, Y.: Numerical solutions of kdv equation using radial basis functions. Appl. Math. Model. 32(4), 535–546 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Deconinck, B., Nivala, M.: The stability analysis of the periodic traveling wave solutions of the mkdv equation. Stud. Appl. Math. 126(1), 17–48 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dingemans, M.: Water Wave Propagation Over Uneven Bottoms. World Scientific, Singapore (1968)

    MATH  Google Scholar 

  17. Flash, T., Handzel, A.A.: Affine differential geometry analysis of human arm movements. Biol. Cybern. 96(6), 577–601 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Korteweg-de Vries equation and generalizations. vi. methods for exact solution. Commun. Pure Appl. Math. 27(1), 97–133 (1974)

    Article  MATH  Google Scholar 

  19. Giblin, P.J., Sapiro, G.: Affine invariant distances, envelopes and symmetry sets. Geom. Ded. 71(3), 237–261 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guan, H., Kuksin, S.: The kdV equation under periodic boundary conditions and its perturbations. Nonlinearity 27(9), R61 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, Z.: Global well-posedness of Korteweg-de Vries equation in h− 3/4(R). Journal de Mathématiques Pures et Appliquées 91(6), 583–597 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hammerlin, G., Hoffmann, K.-H.: Numerical Mathematics. Springer, Berlin (1989)

    MATH  Google Scholar 

  23. Helal, M., Mehanna, M.: A comparative study between two different methods for solving the general Korteweg-de Vries equation (gKdV). Chaos, Solitons & Fractals 33(3), 725–739 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Nat. 28, 693–703 (1973)

    Google Scholar 

  25. Ho, C.-L., Roy, P.: mKdV equation to zero energy states of graphene. arXiv:1507.02649 (2015)

  26. Hou, T., Lowengrub, J., Shelley, M.: Boundary integral methods for multicomponent fluids and multiphase materials. J. Comput. Phys. 169(2), 302–362 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hou, T.Y., Lowengrub, J.S., Shelley, M.J.: Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys. 114(2), 312–338 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kevrekidis, P.G., Khare, A., Saxena, A., Herring, G.: On some classes of mKdV periodic solutions. J. Phys. A Math. Gen. 37(45), 10959 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kodama, Y., Hasegawa, A.: Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron. QE-23(5), 510–524 (1987)

    Article  Google Scholar 

  30. Koroglu, C., Aydin, A.: An unconventional finite difference scheme for modified korteweg-de vries equation. Adv. Math. Phys. 2017, 9 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Krasny, R.: A study of singularity formation in a vortex sheet by the point-vortex approximation. J. Fluid Mech. 167, 65–93 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21(5), 467–490 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lax, P.D.: Periodic solutions of the kdV equation. Selected Papers I, 390–437 (2005)

    Google Scholar 

  34. Leo, P., Lowengrub, J., Nie, Q.: Microstructural evolution in orthotropic elastic media. J. Comput. Phys. 157(1), 44–88 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Leung, S., Lowengrub, J., Zhao, H.: A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion. J. Comput. Phys. 230(7), 2540–2561 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, B., Lowengrub, J., Rätz, A., Voigt, A.: Geometric evolution laws for thin crystalline films: modeling and numerics. Commun. Comput. Phys. 6(3), 433–482 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Liu, H.-F.: Geometric Curve Flows. PhD Thesis, University of California, Irvine (2014)

    Google Scholar 

  38. Malfliet, W.: The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations. J. Comput. Appl. Math. 164–165, 529–541 (2004). Proceedings of the 10th International Congress on Computational and Applied Mathematics

    Article  MathSciNet  MATH  Google Scholar 

  39. Miura, R.M.: The Korteweg-de Vries equation: A survey of results. SIAM Rev. 18(3), 412–459 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  40. Miura, R.M., Gardner, C.S., Kruskal, M.D.: Korteweg-de Vries equation and generalizations. ii. existence of conservation laws and constants of motion. J. Math. Phys. 9(8), 1204–1209 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mousavian, S., Jafari, H., Khalique, C., Karimi, S.: New exact analytical solutions for mKdV equation. TJMCS 2(3), 413–416 (2011)

    Google Scholar 

  42. Nie, Q., Zhang, Y.-T., Zhao, R.: Efficient semi-implicit schemes for stiff systems. J. Comput. Phys. 214(2), 521–537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Palais, R.: The symmetry of solitons. Bull. (New Series) Amer. Math. Soc. 34 (4), 339–403 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Palais, R.S.: The initial value problem for weakly nonlinear pde. J. Fixed Point Theory Appl. 16(1), 337–349 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pava, J.A.: Nonlinear Dispersive Equations. Existence and Stability of Solitary and Periodic Traveling Wave Solutions, volume 156. AMS (2009)

  46. Robertson, I., Sherwin, S.: Free-surface flow simulation using hp/spectral elements. J. Comput. Phys. 155(1), 26–53 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rosenau, P., Hyman, J.M.: Compactons: solitons with finite wavelength. Phys. Rev. Lett. 70, 564–567 (1993)

    Article  MATH  Google Scholar 

  48. Rossman, L.A., Boulos, P.F.: Numerical methods for modeling water quality in distribution systems: a comparison. J. Water Resour. Plan. Manag. 122(2), 137–146 (1996)

    Article  Google Scholar 

  49. Smyth, N., Worthy, A.: Solitary wave evolution for mKdV equations. Wave Motion 21(3), 263–275 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  50. Song, C.: The kdV curve and schrödinger-airy curve. Proc. Am. Math. Soc. 140(2), 635–644 (2012)

    Article  MATH  Google Scholar 

  51. Tadmor, E.: Stability analysis of finite difference, pseudospectral and fourier–Galerkin approximations for time-dependent problems. SIAM Rev. 29(4), 525–555 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  52. Taha, T.R., Ablowitz, M.J.: Analytical and numerical aspects of certain nonlinear evolution equations iii. numerical korteweg-de vries equation. J. Comput. Phys. 55, 231–253 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  53. Tao, T.: Why are solitons stable? arXiv:0808.2408v2(2008)

  54. Terng, C.-L.: Dispersive Geometric Curve Flows. arXiv:1411.2065 (2014)

  55. Terng, C.-L. et al.: Soliton equations and differential geometry. J. Differential Geom. 45(2), 407–445 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  56. Tsai, W.-T., Yue, D.K.: Computation of nonlinear free-surface flows. Annu. Rev. Fluid Mech. 28(1), 249–278 (1996)

    Article  MathSciNet  Google Scholar 

  57. Wang, H., Xiang, C.: Jacobi elliptic function solutions for the modified Korteweg-de Vries equation. J King Saud University - Sci. 25(3), 271–274 (2013)

    Article  Google Scholar 

  58. Yagmurlu, N.M., Tasbozan, O., Ucar, Y., Esen, A.: Numerical solutions of the Combined KdV-mKdV Equation by a Quintic B-spline Collocation Method. Appl. Math. Inform. Sci. Lett. 4(1), 19–24 (2016)

    Google Scholar 

  59. Zheng, X., Shang, Y., Huang, Y.: Abundant explicit and exact solutions for the variable coefficient Mkdv equations. In: Abstract and applied Analysis, vol. 2013. Hindawi Publishing Corporation (2013)

Download references

Acknowledgements

Mariano Franco-de-Leon acknowledges the hospitality of the University of California, Irvine where preliminary work was performed. Gratefully acknowledges economic support from the National Council of Science and Technology in Mexico (CONACyT), the University of California Institute for Mexico and the United States (UC Mexus), partial support from the Ministry of Public Education in Mexico, SEP (Secretaria de Educación Pública), and the Miguel Velez Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Franco-de-Leon.

Additional information

Communicated by: Jan Hesthaven

Appendix A

Appendix A

1.1 A.1 Dynamics of curvature k, arc-length variation s α and angle between the tangent vector and x-axis

By continuity of second derivatives

$$ \begin{array}{ll} X_{\alpha t} &\displaystyle=X_{t \alpha}=\frac{\partial X_{t}}{\partial \alpha}=s_{\alpha}\frac{\partial [V\textbf{n}+T\textbf{s}]}{\partial s}=s_{\alpha}[V_{s}\textbf{n}+V\textbf{n}_{s}+T_{s}\textbf{s}+T\textbf{s}_{s}],\\ s_{\alpha t}&\displaystyle=\frac{x_{\alpha}x_{\alpha t}+y_{\alpha}y_{\alpha t}}{s_{\alpha}}=\frac{X_{\alpha}\cdot X_{\alpha t}}{s_{\alpha}}. \end{array} $$
(A.1)

Now, since Xα = sαs and using the Frenet Formulas we obtain ns = ks, ss = −kn where k represents the curvature. Therefore

$$s_{\alpha t}=s_{\alpha} \textbf{s} \cdot [V_{s}\textbf{n}+Vk\textbf{s}+T_{s}\textbf{s}+T(-k\textbf{n})]=s_{\alpha}(T_{s}+Vk). $$

Also, we can derive the rate of change for \(\theta =\arctan (\frac {y_{\alpha }}{x_{\alpha }})\) (angle between the tangent vector to the curve and the x-axis) as follows

$$ \begin{array}{ll} \theta_{t} &\displaystyle=\frac{1}{1+(\frac{y_{\alpha}}{x_{\alpha}})^{2}}\frac{x_{\alpha}y_{\alpha t}-y_{\alpha}x_{\alpha t}}{(x_{\alpha}^{2})}=\frac{x_{\alpha}y_{\alpha t}-y_{\alpha}x_{\alpha t}}{s_{\alpha}^{2}}\\ &=-\textbf{n}\cdot [V_{s}\textbf{n}+Vk\textbf{s}+T_{s}\textbf{s}+T(-k\textbf{n})]=-V_{s}+kT, \end{array} $$
(A.2)

therefore

$$ \begin{array}{l} \theta_{\alpha t}=\theta_{t \alpha}=\frac{\partial [-V_{s}+kT] }{\partial \alpha}=s_{\alpha}\frac{\partial [-V_{s}+k T]}{\partial s}=s_{\alpha}[-V_{ss}+k_{s}T+kT_{s}]. \end{array} $$
(A.3)

Since \(k=\frac {x_{\alpha }y_{\alpha \alpha }-x_{\alpha \alpha } y_{\alpha }}{s_{\alpha }^{3}}\) and \(k=\frac {\theta _{\alpha }}{s_{\alpha }}\), we get

$$ \begin{array}{ll} k_{t}&\displaystyle=\frac{s_{\alpha} \theta_{\alpha t}-\theta_{\alpha} s_{\alpha t}}{s_{\alpha}^{2}}=\frac{s_{\alpha}^{2}[-V_{ss}+k_{s}T+kT_{s}]-s_{\alpha}^{2}k[T_{s}+kV]}{s_{\alpha}^{2}}\\ & \displaystyle=-V_{ss}+k_{s}T-k^{2}V=-(\frac{\partial^{2}}{\partial s \partial s}+k^{2})V+Tk_{s}. \end{array} $$
(A.4)

1.2 A.2 Linear analysis

Let X(α, t) be given in equation (62). Then,

$$ \begin{array}{ll} X_{\alpha}&=r_{\alpha}(cos\alpha,\sin\alpha)+r(-\sin\alpha,\cos\alpha)\\ X_{\alpha \alpha}&=r_{\alpha \alpha}(\cos\alpha, \sin\alpha)+r(-\cos \alpha,-\sin\alpha)+r_{\alpha}(-2\sin\alpha,2\cos\alpha). \end{array} $$
(A.5)

This implies that

$$ s_{\alpha}=\sqrt{(r_{\alpha}\cos \alpha+r(-\sin\alpha))^{2}+(r_{\alpha}\sin\alpha+r\cos\alpha)^{2}}=\sqrt{r^{2}+r_{\alpha}^{2}}, $$
(A.6)

and

$$ k=\frac{r^{2}+ 2r_{\alpha}^{2}-rr_{\alpha \alpha}}{(\sqrt {r^{2}+r_{\alpha}^{2}})^{3}}. $$
(A.7)

The normal vector and differential of the arc-length are

$$ \begin{array}{ll} \textbf{n}&\displaystyle=\frac{(r_{\alpha}\sin \alpha+r\cos\alpha,r\sin\alpha-r_{\alpha}\cos\alpha)}{\sqrt{r^{2}+r_{\alpha}^{2}}},\\ s_{\alpha}&\displaystyle=\sqrt{R^{2}+ 2R(\delta_{R}\cos(m\alpha)-\delta_{I}\sin(m\alpha))}+O(\delta^{2})\\ &\displaystyle=R[1+\frac{\delta_{R}\cos(m\alpha)-\delta_{I}\sin(m\alpha)}{R}+O(\delta^{2})]. \end{array} $$
(A.8)

Therefore

$$ \frac{1}{s_{\alpha}}=\frac{1}{R}[1-\frac{\delta_{R}\cos(m\alpha)-\delta_{I}\sin(m\alpha)}{R}+O(\delta^{2})]. $$
(A.9)

Using the expression for the curvature (A.7), it follows that the normal velocity is

$$ k_{s}=\frac{1}{s_{\alpha}}\frac{\partial \left[ \frac{r^{2}+ 2r_{\alpha}^{2}-rr_{\alpha \alpha}}{(\sqrt {r^{2}+r_{\alpha}^{2}})^{3}}\right]}{\partial \alpha}=\frac{1}{s_{\alpha}^{4}}(2rr_{\alpha}+ 3r_{\alpha}r_{\alpha\alpha}-rr_{\alpha\alpha\alpha})-\frac{3}{s_{\alpha}^{5}}s_{\alpha\alpha}(r^{2}+ 2r_{\alpha}^{2}-rr_{\alpha\alpha}). $$
(A.10)

A simple computation shows

$$ \begin{array}{ll} &r_{\alpha}=m(-\delta_{R}\sin(m\alpha)-\delta_{I}\cos(m\alpha))\\ & r_{\alpha \alpha}=m^{2}(-\delta_{R}\cos(m\alpha)+\delta_{I}\sin(m\alpha))\\ & r_{\alpha\alpha\alpha}=m^{3}(\delta_{R}\sin(m\alpha)+\delta_{I}\cos(m\alpha))\\ &\displaystyle s_{\alpha\alpha}=\frac{rr_{\alpha}+r_{\alpha}r_{\alpha \alpha}}{s_{\alpha}}. \end{array} $$
(A.11)

Thus, after substitution in (A.10) we can write

$$ \begin{array}{ll} &\displaystyle k_{s}=\frac{1}{s_{\alpha}^{4}}\left[2Rm[-\delta_{R}\sin(m\alpha)-\delta_{I}\cos(m\alpha)]-Rm^{3}(\delta_{R}\sin(m\alpha)+\delta_{I}\cos(m\alpha))\right]\\ &\displaystyle-\frac{3}{s_{\alpha}^{6}}[rr_{\alpha}+r_{\alpha}r_{\alpha \alpha}][R^{2}+ 2R(\delta_{R}\cos(m\alpha)-\delta_{I}\sin(m\alpha))-Rm^{2}(-\delta_{R}\cos(m\alpha)\\ &+\delta_{I}\sin(m\alpha))]\\ &\displaystyle=\frac{1}{R^{3}}\{[-m(\delta_{R}\sin(m\alpha)+\delta_{I}\cos(m\alpha))(2+m^{2})]+ 3m(\delta_{R}\sin(m\alpha))\\ &+\delta_{I}\cos(m\alpha)\}+O(\delta^{2})\\ &\displaystyle=\frac{1}{R^{3}}(\delta_{R}\sin(m\alpha)+\delta_{I}\cos(m\alpha))(m-m^{3})+O(\delta^{2}). \end{array} $$
(A.12)

The tangential velocity can be computed similarly:

$$ \begin{array}{ll} &\displaystyle T=\frac{\left( \frac{r^{2}+ 2r_{\alpha}^{2}-rr_{\alpha \alpha}}{(\sqrt {r^{2}+r_{\alpha}^{2}})^{3}} \right)^{2}}{2}=\frac{1}{2}\left( (\frac{1}{R^{3}}-3\frac{\gamma}{R^{4}})(R^{2}+ 2R\gamma-R(-m^{2})\gamma) \right)^{2}\\ &\displaystyle=\frac{1}{2}\left( \frac{1}{R}-\frac{1}{R^{2}}3\gamma+\frac{\gamma}{R^{2}}(2+m^{2})) \right)^{2}+O(\delta^{2})=\frac{1}{2} \left( \frac{1}{R^{2}}+\gamma(m^{2}-1) \right) \end{array} $$
(A.13)

where γ = δR cos(mα) − δI sin(mα). Therefore, the velocity is

$$ \begin{array}{ll} &\displaystyle W:=-k_{s}\textbf{n}+T\textbf{s}=\\ &\displaystyle(\frac{1}{R^{3}}(\delta_{R}\sin(m\alpha)+\delta_{I}\cos(m\alpha))(m^{3}-m))\textbf{n}+\frac{1}{2} \left( \frac{1}{R^{2}}+\gamma(m^{2}-1) \right) \textbf{s}+O(\delta^{2}), \end{array} $$
(A.14)

whose projection is

$$ W \cdot (\cos \alpha,\sin\alpha)=\delta_{I} \left( \frac{m^{3}-1.5m}{R^{3}} \right)\cos(m\alpha)+ \delta_{R} \left( \frac{m^{3}-1.5m}{R^{3}} \right)\sin(m\alpha)+O(\delta^{2}). $$
(A.15)

1.3 A.3 Direct calculation 1

We can write the equations based on CN scheme (19) as follows

$$ \widehat{\dot{\theta}_{m}^{j + 1}}={\zeta_{m}^{1}}\widehat{\dot{\theta}_{m}^{j-1}}+ 2{\Delta} t {\zeta_{m}^{2}} \widehat{\dot{ NL}_{m}^{j}}+A_{0}({\Delta} t^{3}), $$
(A.16)
$$ \widehat{\dot{\theta}_{m}^{j-1}}={\zeta_{m}^{1}}\widehat{\dot{\theta}_{m}^{j-3}}+ 2{\Delta} t {\zeta_{m}^{2}} \widehat{\dot{ NL}_{m}^{j-2}}+A_{0}({\Delta} t^{3}), $$
(A.17)

to obtain

$$ \begin{array}{ll} &\langle \widehat{\dot{\theta}^{j + 1}}-\widehat{\dot{\theta}^{j-1}}, \widehat{\dot{\theta}^{j + 1}}+\widehat{\dot{\theta}^{j-1}} \rangle=\\ &{\langle\zeta_{m}^{1}}\widehat{\dot{\theta}_{m}^{j-1}}+ 2{\Delta} t {\zeta_{m}^{2}} \widehat{\dot{ NL}_{m}^{j}}-\left( {\zeta_{m}^{1}}\widehat{\dot{\theta}_{m}^{j-3}}+ 2{\Delta} t {\zeta_{m}^{2}} \widehat{\dot{ NL}_{m}^{j-2}}+A_{0}({\Delta} t^{3}) \right),\\ &{\zeta_{m}^{1}}\widehat{\dot{\theta}_{m}^{j-1}}+ 2{\Delta} t {\zeta_{m}^{2}} \widehat{\dot{ NL}_{m}^{j}}+{\zeta_{m}^{1}}\widehat{\dot{\theta}_{m}^{j-3}}+ 2{\Delta} t {\zeta_{m}^{2}} \widehat{\dot{ NL}_{m}^{j-2}}+A_{0}({\Delta} t^{3})\rangle\\ &=\langle {\zeta_{m}^{1}}\left( \widehat{\dot{\theta}_{m}^{j-1}} -\widehat{\dot{\theta}_{m}^{j-3}}\right)+ 2{\Delta} t {\zeta_{m}^{2}}\left( \widehat{\dot{ NL}_{m}^{j}}- \widehat{\dot{ NL}_{m}^{j-2}}\right)+A_{0}({\Delta} t^{3}),\\ & {\zeta_{m}^{1}}\left( \widehat{\dot{\theta}_{m}^{j-1}} +\widehat{\dot{\theta}_{m}^{j-3}}\right)+ 2{\Delta} t {\zeta_{m}^{2}}\left( \widehat{\dot{ NL}_{m}^{j}}+ \widehat{\dot{ NL}_{m}^{j-2}}\right)+A_{0}({\Delta} t^{3})\rangle. \end{array} $$
(A.18)

1.4 A.4 Nonlinear error estimates

In this proof, the hypothesis 2 ≤ r is used, which is satisfied in both schemes (4 ≤ r for ADB and 6 ≤ r for CN).

Proof Lemma 1

We start computing upper bounds for \(|S_{h}\dot {f^{j}}|_{\infty },|\dot {f^{j}}|_{\infty }\). Notice that

$$ h|\dot{f}^{j}|^{2}\leq \sum\limits_{i=-N/2 + 1}^{N/2}|\dot{{f_{i}^{j}}}|^{2}h=||\dot{f^{j}}||_{l^{2}}^{2}, $$
(A.19)

which implies

$$ |\dot{{f_{m}^{j}}}|_{\infty}\leq h^{-1/2}||\dot{f^{j}}||_{l^{2}} \text{ and, } |S_{h}\dot{f^{j}}|_{\infty},|S_{h}\dot{f^{j}}|_{\infty}\leq h^{-3/2}||\dot{f^{j}}||_{l^{2}}. $$
(A.20)

Then, condition 2 ≤ r and the definition of T shows that

$$ |S_{h}\dot{\theta^{j}}|_{\infty},|\dot{\theta^{j}}|_{\infty}\leq C \text{ are bounded.} $$
(A.21)

Now, we define

$$ NL(\alpha_{m},t_{j}):=\frac{1}{2}(\frac{2\pi}{L})^{3}(\theta_{\alpha}(\alpha_{m},t_{j}))^{3} \text{ and }\: \widetilde{N{L_{m}^{j}}}:=\frac{1}{2}(\frac{2\pi}{\widetilde{L}})^{3}(S_{h} \widetilde{{\theta_{m}^{j}}})^{3}, $$
(A.22)

to write the nonlinear terms as follows:

$$ \dot{NL}_{m}^{j}:=\widetilde{N{L_{m}^{j}}}-NL(\alpha_{m},t_{j})=\dot{\xi}_{m}^{j}{T_{m}^{j}}+\dot{\xi}_{m}^{j}\dot{T}_{m}^{j}+{\xi_{m}^{j}}\dot{T}_{m}^{j}, $$
(A.23)

where

$$ {\xi_{m}^{j}}:=\frac{2\pi}{L}S_{h}{\theta_{m}^{j}},\: \xi(\alpha_{m},t_{j}):=\frac{2\pi}{L} \theta_{\alpha}(\alpha_{m},t_{j}),\: \widetilde{{\xi_{m}^{j}}}:=\frac{2\pi}{\widetilde{L}}S_{h} \widetilde{{\theta_{m}^{j}}}, $$
(A.24)
$$ \dot{\xi}_{m}^{j}:=(\widetilde{{\xi_{m}^{j}}}- {\xi_{m}^{j}})+({\xi_{m}^{j}}-\xi(\alpha_{m},t_{j})), $$
(A.25)

and

$$ {T_{m}^{j}}:=\frac{1}{2}(\frac{2\pi}{L})^{2}(S_{h}{\theta_{m}^{j}})^{2},\: T(\alpha_{m},t_{j}):=\frac{1}{2}(\frac{2\pi}{L})^{2}(\theta_{\alpha}(\alpha_{m},t_{j}))^{2},\: \widetilde{{T_{m}^{j}}}:=\frac{1}{2}(\frac{2\pi}{\widetilde{L}})^{2}(S_{h} \widetilde{{\theta_{m}^{j}}})^{2}. $$
(A.26)

1.4.1 A.4.1 Error in tangential velocity

We calculate the error for the tangential velocity

$$ \dot{T}_{m}^{j}:=\widetilde{{T_{m}^{j}}}-T(\alpha_{m},t_{j})=\frac{1}{2}\left[ \widetilde{{\xi_{m}^{j}}}^{2}-({\xi_{m}^{j}})^{2}\right]=\frac{1}{2}\left[ 2\dot{\xi}_{m}^{j} {\xi_{m}^{j}}+(\dot{\xi}_{m}^{j})^{2}\right]. $$
(A.27)

Since the truncation error \(({\xi _{m}^{j}}-\xi (\alpha _{m},t_{j}))=O(h^{r + 2})\), it follows that

$$\begin{array}{@{}rcl@{}} \dot{\xi}_{m}^{j}&=&\frac{2\pi}{\widetilde{L}}S_{h}\widetilde{{\theta_{m}^{j}}}-\frac{2\pi}{L}S_{h}{\theta_{m}^{j}}+O(h^{r + 2})= 2\pi S_{h}\dot{\theta}_{m}^{j}\dot{(L^{-1})}+\frac{2\pi}{L}S_{h}\dot{\theta}_{m}^{j}\\ &&+ 2\pi S_{h}{\theta_{m}^{j}}\dot{(L^{-1})}+O(h^{r + 2}), \end{array} $$

where

$$\dot{L^{-1}}=\frac{1}{\widetilde{L}}-\frac{1}{L}=\frac{-\dot{L}}{L^{2}}+\frac{(\dot{L})^{2}}{L^{2}[L+\dot{L}]}, $$

which implies \(|\dot {L^{-1}}|\leq C|\dot {L}|\), and therefore

$$ A_{0}\dot{(L^{-1})}=A_{0}(\dot{L}). $$
(A.28)

Combining (A.21), (A.28) and

$$ S_{h}{\theta_{m}^{j}}=\theta_{\alpha}(\alpha_{m},t_{j})+O(h^{r + 2}). $$
(A.29)

in the expression for \(\dot {\xi }_{m}^{j}\) we see that

$$ \dot{\xi}_{m}^{j}=\frac{2\pi}{L}S_{h}\dot{\theta}_{m}^{j} +A_{0}(\dot{L})+O(h^{r + 2}). $$
(A.30)

By hypothesis over time (35), (A.45) and computation (A.20) we find that

$$ |A_{0}(\dot{L})|_{\infty}\leq Ch^{-1/2}||\dot{L}||_{l^{2}}=h^{-1/2}O(h^{r + 3})=O(h^{r + 5/2}). $$
(A.31)

Hence, we rewrite

$$ \dot{\xi}_{m}^{j}=\frac{2\pi}{L}S_{h}\dot{\theta}_{m}^{j} +O(h^{r + 2})=h^{-1}A_{0}(\dot{\theta}^{j})+O(h^{r + 2}). $$
(A.32)

Also \(||O(h^{r + 2})||_{l^{2}}=O(h^{r + 2})\) and the conditions \(\frac {{\Delta } t}{h}\leq C\), 2 ≤ r imply that

$$ \begin{array}{ll} &||\dot{\xi}^{j}||_{l^{2}}=O(h^{-1}(h^{r}+{\Delta} t^{2}))+O(h^{r + 2}) =O(h) \text{ and }\\ &|\dot{\xi}|_{\infty}=h^{-1/2}||\dot{\xi}^{j}||_{l^{2}}\leq C\text{ are bounded.} \end{array} $$
(A.33)

With this information (A.33) back to (A.27) is possible to rewrite

$$\dot{T}_{m}^{j}=\frac{1}{2}\left[ 2\left( \frac{2\pi}{L}S_{h}\dot{\theta}_{m}^{j}+O(h^{r + 2})\right)\frac{2\pi}{L}S_{h}{\theta_{m}^{j}}+ \left( \frac{2\pi}{L}S_{h}\dot{\theta}_{m}^{j}+O(h^{r + 2})\right)^{2} \right]. $$

Again using (A.29), the fact that θα is bounded and the upper bound (A.33), the first term on the right hand side becomes

$$ \begin{array}{ll} &\displaystyle\left( \frac{2\pi}{L}S_{h}\dot{\theta}_{m}^{j}+O(h^{r + 2})\right)\frac{2\pi}{L}S_{h}{\theta_{m}^{j}}=\left( \frac{2\pi}{L}S_{h}\dot{\theta}_{m}^{j}+O(h^{r + 2})\right) \left( \frac{2\pi}{L}\theta_{\alpha}(\alpha_{m},t_{j})+O(h^{r + 2})\right)\\ &\displaystyle=\left( \frac{2\pi}{L}S_{h}\dot{\theta}_{m}^{j}+O(h^{r + 2})\right) \frac{2\pi}{L}\theta_{\alpha}(\alpha_{m},t_{j})+ \dot{\xi}_{m}^{j} O(h^{r + 2})=\theta_{\alpha}(\alpha_{m},t_{j})(\frac{2\pi}{L})^{2}S_{h}\dot{\theta}_{m}^{j}+O(h^{r + 2}). \end{array} $$
(A.34)

As shown previously \(S_{h}\dot {\theta }_{m}^{j},\dot {\xi }_{m}^{j}\), are bounded. Thus, the second term can be computed as

$$ \begin{array}{ll} &\displaystyle\left( \frac{2\pi}{L}S_{h}\dot{\theta}_{m}^{j}+O(h^{r + 2})\right)^{2}=\left( \frac{2\pi}{L}S_{h}\dot{\theta}_{m}^{j}+O(h^{r + 2})\right)\dot{\xi}_{m}^{j}=\frac{2\pi}{L}S_{h}\dot{\theta}_{m}^{j} \dot{\xi}_{m}^{j}+O(h^{r + 2})\\ &\displaystyle=\frac{2\pi}{L}S_{h}\dot{\theta}_{m}^{j}\left( \frac{2\pi}{L}S_{h}\dot{\theta}_{m}^{j}+O(h^{r + 2})\right)+O(h^{r + 2})=\left( \frac{2\pi}{L}S_{h}\dot{\theta}_{m}^{j}\right)^{2}+O(h^{r + 2}) \end{array} $$
(A.35)

Using 2 ≤ r we verify the inequality

$$ ||(S_{h}\dot{\theta}_{m}^{j})^{2}||_{l^{2}}\leq h^{-2}||\dot{\theta}_{m}^{j}||^{2}_{l^{2}}=O(h^{-2})O(h^{r}+{\Delta} t^{2})||\dot{\theta}^{j}||_{l_{2}}=A_{0}(\dot{\theta}^{j}). $$
(A.36)

Therefore

$$ \dot{T}_{m}^{j}=(\frac{2\pi}{L})^{2}\theta_{\alpha}(\alpha_{m},t_{j})S_{h}\dot{\theta}_{m}^{j}+A_{0}(\dot{\theta}^{j})+O(h^{r + 2})=h^{-1}A_{0}(\dot{\theta}^{j})+A_{0}(\dot{\theta}^{j})+O(h^{r + 2}). $$
(A.37)

By hypothesis for time T and 2 ≤ r, we find that

$$ ||\dot{T^{j}}||_{l^{2}}=O(h^{-1}(h^{r}+{\Delta} t^{2}))+O(h^{r}+{\Delta} t^{2})\leq C,\: |\dot{T^{j}}|_{\infty}\leq h^{-1/2}||\dot{T^{j}}||_{l^{2}}\leq C $$
(A.38)

are bounded quantities.

1.4.2 A.4.2 Error for nonlinear term

Combining equation (A.32), (A.33), (A.37), (A.38), we approximate (A.23) to obtain

$$ \begin{array}{ll} &\dot{NL}_{m}^{j}=\displaystyle\left\{ \frac{2\pi}{L}S_{h}\dot{\theta}_{m}^{j} +O(h^{r + 2})\right\}{T_{m}^{j}}+\dot{\xi}_{m}^{j}\dot{T}_{m}^{j}+{\xi_{m}^{j}}\left\{ \frac{(2\pi)^{2}}{L^{2}}\theta_{\alpha}(\alpha_{m},t_{j}) S_{h}\dot{\theta}_{m}^{j}\right.\\ &\displaystyle\left.\vphantom{\frac{(2\pi)^{2}}{L^{2}}}+A_{0}(\dot{\theta}^{j})+O(h^{r + 2}) \right\}\\ &\displaystyle=\frac{2\pi}{L}S_{h}\dot{\theta}_{m}^{j}{T_{m}^{j}}+\dot{\xi}_{m}^{j}\dot{T}_{m}^{j}+{\xi_{m}^{j}}(\frac{2\pi}{L})^{2}{\theta_{\alpha}(\alpha_{m},t_{j})}^{2} S_{h}\dot{\theta}_{m}^{j}+A_{0}(\dot{\theta}^{j})+O(h^{r + 2}). \end{array} $$
(A.39)

The second term on the previous expression can be analyzed using equations (A.21) as follows

$$ \begin{array}{ll} &\displaystyle\dot{\xi}_{m}^{j}\dot{T}_{m}^{j}=\left( \frac{2\pi}{L}S_{h}\dot{\theta}_{m}^{j}+O(h^{r + 2})\right)\left( (\frac{2\pi}{L})^{2}\theta_{\alpha}(\alpha_{m},t_{j})S_{h}\dot{\theta}_{m}^{j}+A_{0}(\dot{\theta}_{m}^{j})+O(h^{r + 2}) \right)\\ &\displaystyle= \frac{2\pi}{L}\left( S_{h}\dot{\theta}_{m}^{j}\right)^{2} (\frac{2\pi}{L})^{2}\theta_{\alpha}(\alpha_{m},t_{j})+A_{0}(\dot{\theta^{j}})+O(h^{r + 2}), \end{array} $$
(A.40)

which by the estimate (A.36) simplifies to \(\dot {\xi }_{m}^{j}\dot {T}_{m}^{j}=A_{0}(\dot {\theta })+O(h^{r + 2})\).

As a consequence of the truncation error for the tangent velocity \({T_{m}^{j}}-T(\alpha _{m},t_{j})=O(h^{r + 2})\) and \({\xi _{m}^{j}}-\xi (\alpha _{m}t_{j})=O(h^{r + 2})\), we obtain

$$ \begin{array}{ll} &\displaystyle\dot{NL}_{m}^{j}=\frac{2\pi}{L}S_{h}\dot{\theta}_{m}^{j}\left( \frac{1}{2}(\frac{2\pi}{L})^{2}\theta_{\alpha}^{2}(\alpha_{m},t_{j})+O(h^{r + 2})\right)\\ &\displaystyle+\left( \frac{2\pi}{L}\theta_{\alpha}(\alpha_{m},t_{j})+O(h^{r + 2}) \right)(\frac{2\pi}{L})^{2}{\theta_{\alpha}(\alpha_{m},t_{j})}^{2} S_{h}\dot{\theta}_{m}^{j}+A_{0}(\dot{\theta}^{j})+O(h^{r + 2}). \end{array} $$
(A.41)

Finally, using equation (A.21) we attain an expression for the nonlinear error

$$ \dot{NL}_{m}^{j}=\frac{3}{2}(\frac{2\pi}{L})^{3}\theta_{\alpha}^{2}(\alpha_{m},t_{j})S_{h}\dot{\theta}_{m}^{j} +A_{0}(\dot{\theta}^{j})+O(h^{r + 2})=h^{-1}A_{0}(\dot{\theta}^{j})+A_{0}(\dot{\theta}^{j})+O(h^{r + 2}), $$
(A.42)

and the upper bounds

$$ \begin{array}{ll} ||\dot{NL}_{m}^{j}||_{l_{2}}&\leq \frac{3}{2}\frac{2\pi}{L}|k^{2}|_{\infty}h^{-1}||\dot{\theta}_{m}^{j}||_{l^{2}}+O(h^{r}+{\Delta} t^{2})+O(h^{r + 3/2})\\ &=O(h^{r-1}+h^{-1}{\Delta} t^{2}),\\ |\dot{NL}^{j}|_{\infty}&=h^{-1/2}||\dot{NL}^{j}||_{l^{2}}\leq C,\\ {\Delta} t ||\dot{NL}_{m}^{j}||_{l_{2}}&=C\frac{{\Delta} t}{h}||\dot{\theta}_{m}^{j}||_{l^{2}}+O(h^{r}+{\Delta} t^{2})=O(h^{r}+{\Delta} t^{2}), \end{array} $$
(A.43)

for j = 1, ... , n, provided that \(\frac {{\Delta } t}{h}\) is bounded.

1.5 A.5 Proof of convergence for Adams Bashforth (ADB) discretization

Proof of Theorem 1

The error between the numerical and the exact solution (at a given time tj) is given by

$$ \dot{\theta}_{m}^{j}:=\widetilde{{\theta_{m}^{j}}}-\theta(\alpha_{m},t_{j}). $$
(A.44)

Defining the auxiliary time,

$$ T^{*}=Sup\{t|t\leq T,|\dot{L}|<h^{r + 3},||\dot{\theta}^{j}||_{l^{2}}=O(h^{r}+{\Delta} t^{2})\},\\ $$
(A.45)

for j = 0, 1, ... , n (we have an overall accuracy of h2) we will show that the error at the step n + 1 also satisfies the estimate \(||\dot {\theta }^{n + 1}||_{l^{2}}=O(h^{r}+{\Delta } t^{2})\). Hence T = T by induction. □

Taylor approximations:

for the first step of the induction argument, we calculate upper bounds for the first step, based on a combination of Euler and integrating factor method (IFM) using the Taylor expansion:

$$ \frac{\partial {\Psi}}{\partial t}=(rNL),\:\: {r_{m}^{t}}(t)=e^{i(2\pi m)^{3}tL^{-3}},\:\: {\Psi}(m,j)={r_{m}^{t}}\widehat{{\theta_{m}^{j}}}. $$
(A.46)

Expanding Ψ around time t0 and defining \(\zeta _{m}=e^{-i(2\pi m)^{3}L^{-3}{\Delta } t}\), we obtain

$$ \widehat{ {\theta_{m}^{1}}}=\zeta_{m} (\widehat{ {\theta_{m}^{0}}}+{\Delta} t \widehat{N{L_{m}^{0}}} )+{\Delta} t^{2}\frac{\zeta_{m}}{2}({\Psi}_{tt})_{m}^{0}+O({\Delta} t^{3}). $$
(A.47)

The numerical solution satisfies at the first step (Euler discretization)

$$ \widehat{\widetilde{{\theta_{m}^{1}}}}=\zeta_{m} (\widehat{ \widetilde{ {\theta_{m}^{0}}}}+{\Delta} t \widehat{\widetilde{N{L_{m}^{0}}}} ) $$
(A.48)

thus, we can write an expression for the error at the first step

$$ \widehat{\dot{\theta}_{m}^{1}}=\zeta_{m} \widehat{\dot{\theta}_{m}^{0}} +{\Delta} t \zeta_{m} \widehat{\dot{NL}_{m}^{0}}+{\Delta} t^{2}\frac{\zeta_{m}}{2}({\Psi}_{t t})_{m}^{0}+O({\Delta} t^{3}). $$
(A.49)

Observe that \(||\frac {\zeta }{2}\widehat {({\Psi }_{t t})^{0}}||=\frac {1}{2}||\widehat {({\Psi }_{t t})^{0}}||=\frac {1}{2\sqrt {2\pi }}||({\Psi }_{t t})^{0}||_{l^{2}}\). We will see that the coefficients of Δt2 term are bounded (independent of discretization) in l2 norm. Since

$$ {{\Psi}_{t}}_{m}=e^{i t(\frac{2\pi m}{L})^{3}}\widehat{NL_{m}}, $$
(A.50)

then

$$ {{\Psi}_{t t}}_{m}=e^{i t(\frac{2\pi m}{L})^{3}}\left( (\widehat{N{L^{0}_{m}}})_{t}+\widehat{N{L^{0}_{m}}}i(\frac{2\pi m}{L})^{3}\right). $$
(A.51)

Because θ is 2 times differentiable with respect to time (so we can commute derivatives), we can write \(NL_{t}=-\frac {1}{2s_{\alpha }^{3}}\frac {3}{2}\theta _{\alpha }^{2}\theta _{\alpha t}=-\frac {1}{2s_{\alpha }^{3}}\frac {3}{2}\theta _{\alpha }^{2}\frac {1}{s_{\alpha }^{3}}[\theta _{\alpha \alpha \alpha \alpha }+(\frac {\theta _{\alpha }^{3}}{2})_{\alpha }]\) which involves spatial derivatives of order 4 for theta. Hence by the assumption 4 ≤ r, these derivatives are L2 integrable. Also \((\widehat {NL_{m}})_{t}=(\widehat {{{NL_{t}}_{m}}})\) shows that \((\widehat {NL^{0}})_{t}\) is l2 integrable.

To control the second term of (A.51) observe that

$$ \widehat{(NL_{sss})^{0}_{m}}=-\widehat{N{L^{0}_{m}}}i(\frac{2\pi m}{L})^{3}, $$
(A.52)

and \(NL_{sss}=\frac {1}{2s_{\alpha }^{6}}(\theta _{\alpha }^{3})_{\alpha \alpha \alpha }\) involves L2 integrable derivatives of order 4 for theta. This shows that \(\widehat {NL^{0}}i(\frac {2\pi m}{L})^{3}\) is bounded in the l2 norm and consequently \(||({\Psi }_{t t})_{m}^{0}||_{l^{2}}\) is also bounded. In other words

$$ \widehat{ {\theta_{m}^{1}}}=\zeta_{m} (\widehat{ {\theta_{m}^{0}}}+{\Delta} t \widehat{N{L_{m}^{0}}} )+A_{0}({\Delta} t^{2}), $$
(A.53)

and

$$ ||\widehat{\dot{\theta}^{1}}||^{2}=\langle \zeta_{m} \widehat{\dot{\theta}_{m}^{0}} +{\Delta} t \zeta_{m} \widehat{\dot{NL}_{m}^{0}}+A_{0}({\Delta} t^{2}), \zeta_{m} \widehat{\dot{\theta}_{m}^{0}} +{\Delta} t \zeta_{m} \widehat{\dot{NL}_{m}^{0}}+A_{0}({\Delta} t^{2})\rangle. $$
(A.54)

Now, we analyze the error after the second step (1 ≤ j). Using Taylor’s approximation we obtain

$$ \widehat{\theta_{m}^{j + 1}}=\widehat{{\theta_{m}^{j}}}\zeta_{m}+\frac{{\Delta} t}{2}(3\zeta_{m} \widehat{N{L_{m}^{j}}}-(\zeta_{m})^{2}\widehat{NL_{m}^{j-1}})+\frac{5{\Delta} t^{3}}{12}({\Psi}^{(3)})_{m}^{j}+O({\Delta} t^{4}). $$
(A.55)

On the other hand, the numerical solution (17) satisfies:

$$ \widehat{\widetilde{\theta_{m}^{j + 1}}}=\widehat{\widetilde{{\theta_{m}^{j}}}} \zeta_{m}+\frac{{\Delta} t}{2}(3 \zeta_{m}\widehat{\widetilde{N{L_{m}^{j}}}}- (\zeta_{m})^{2}\widehat{\widetilde{NL_{m}^{j-1}}}). $$
(A.56)

Subtracting (A.55) from (A.56) we obtain the following equation for the error in θ:

$$ \widehat{\dot{\theta}_{m}^{j + 1}}=\zeta_{m} \widehat{\dot{\theta}_{m}^{j}}+\frac{{\Delta} t}{2}\widehat{\dot{ \mu}_{m}^{j}}+\frac{5{\Delta} t^{3}}{12}({\Psi}^{(3)})_{m}^{j}+O({\Delta} t^{4}), $$
(A.57)

where

$$ \widehat{\dot{ \mu}_{m}^{j}}= 3 \zeta_{m}\widehat{\dot{NL}_{m}^{j}}- (\zeta_{m})^{2}\widehat{\dot{NL}_{m}^{n-1}}. $$
(A.58)

Similarly way to the first step and for future estimates we show that the coefficient for the Δt3 term in (A.57) is integrable in the l2 norm.

From (A.51) we obtain

$$ \begin{array}{ll} &{{\Psi}_{t t t}}_{m}=\\ &\displaystyle e^{i t(\frac{2\pi m}{L})^{3}}\left( (\widehat{NL_{m}})_{t t}\,+\,(\widehat{NL_{m}})_{t}i(\frac{2\pi m}{L})^{3} + i(\frac{2\pi m}{L})^{3}\left( (\widehat{NL_{m}})_{t}\,+\,\widehat{NL_{m}}i(\frac{2\pi m}{L})^{3}\right)\right)\\ &=e^{i t(\frac{2\pi m}{L})^{3}}\left( (\widehat{NL_{m}})_{t t}+ 2\underbrace{(\widehat{NL_{m}})_{t}i(\frac{2\pi m}{L})^{3}}_{T1} +\underbrace{(i(\frac{2\pi m}{L})^{3})^{2}\widehat{NL_{m}}}_{T2}\right). \end{array} $$
(A.59)

Now

$$\begin{array}{ll} &\displaystyle NL_{t t}=((\frac{{\theta_{s}^{3}}}{2})_{t})_{t}=(\frac{1}{s_{\alpha}^{3}}\frac{3}{2}\theta_{\alpha}^{2}\theta_{\alpha t})_{t}=\frac{3}{2s_{\alpha}^{3}}\left( \theta_{\alpha}^{2}(\theta_{sss}+\frac{{\theta_{s}^{3}}}{2})_{\alpha}\right)_{t}\\ &\displaystyle=\frac{3}{2s_{\alpha}^{3}}\left( 2\theta_{\alpha}\theta_{\alpha t}\theta_{t \alpha}+ \theta_{\alpha}^{2}(\theta_{sss}+(\frac{{\theta_{s}^{3}}}{2}))_{\alpha t}\right)\\ &\displaystyle=\frac{3}{2s_{\alpha}^{3}}\left( 2\theta_{\alpha}\theta_{\alpha t}\theta_{t \alpha}+ \theta_{\alpha}^{2}(\theta_{sss}+(\frac{{\theta_{s}^{3}}}{2}))_{\alpha t}\right), \end{array} $$
(A.60)

involves spatial derivatives of order 7 for θ, since 4 ≤ r (by hypothesis) we know these are l2 integrable. In addition temporal derivatives, and Fourier transform commute, we conclude that each term in (A.60) is l2 integrable. Moreover, (NLt)sss, (NL)ssssss are also l2 integrable provided θ is at least 7 times differentiable. Consequently, terms T1 and T2 of (A.59) are l2 integrable too. This implies that Ψttt is also l2 integrable and we rewrite (A.57) as

$$ \widehat{\dot{\theta}_{m}^{j + 1}}=\zeta_{m} \widehat{\dot{\theta}_{m}^{j}}+\frac{{\Delta} t}{2}\widehat{\dot{ \mu}_{m}^{j}}+A_{0}({\Delta} t^{3}). $$
(A.61)

To estimate the error consider the inner product

$$ \langle \widehat{\dot{\theta}^{j + 1}}-\zeta \widehat{\dot{\theta}^{j-1}}, \widehat{\dot{\theta}^{j + 1}}+\zeta \widehat{\dot{\theta}^{j-1}}\rangle=||\widehat{\dot{\theta}^{j + 1}}||^{2}-|| \widehat{\dot{\theta}^{j-1}}||^{2}+ 2iIm(\langle \widehat{\dot{\theta}^{j + 1}},\zeta \widehat{\dot{\theta}^{j-1}} \rangle), $$
(A.62)

where we have used that |ζm| = 1 for each m and ζ = (ζN/2 + 1,.., ζN/2).

Using (A.61) and

$$ \widehat{\dot{\theta}_{m}^{j}}=\zeta_{m} \widehat{\dot{\theta}_{m}^{j-1}}+\frac{{\Delta} t}{2}\widehat{\dot{ \mu}_{m}^{j-1}}+A_{0}({\Delta} t^{3}), $$
(A.63)

into the main equation (A.62) we obtain the right hand side

$$ \begin{array}{ll} &\langle \widehat{\dot{\theta}^{j + 1}}-\zeta \widehat{\dot{\theta}^{j-1}}, \widehat{\dot{\theta}^{j + 1}}+\zeta \widehat{\dot{\theta}^{j-1}}\rangle\\ &\displaystyle=\langle (\zeta-1) \widehat{\dot{\theta}^{j}}+ \frac{{\Delta} t}{2} (\widehat{\dot{\mu}^{j}}+\widehat{\dot{\mu}^{j-1}})+A_{0}({\Delta} t^{3}), (\zeta+ 1) \widehat{\dot{\theta}^{j}}\\ &+ \frac{{\Delta} t}{2}(\widehat{\dot{\mu}^{j}}-\widehat{\dot{\mu}^{j-1}})+A_{0}({\Delta} t^{3}) \rangle. \end{array} $$
(A.64)

By definition (A.58) of \(\dot {\mu }_{m}^{j}\), using the estimate for the nonlinear error \({\Delta } t ||\dot {NL}^{j}||_{l^{2}}=O(h^{r}+{\Delta } t^{2})\) (57) and Plancherel theorem we have that

$$ ||{\Delta} t\dot{ \mu}^{j}||_{l^{2}}={\Delta} t|| 3 \zeta\widehat{\dot{NL}^{j}}- (\zeta)^{2}\widehat{\dot{NL}^{n-1}}||\leq C{\Delta} t(||\dot{NL}^{j}||_{l^{2}}+||\dot{NL}^{j-1}||_{l^{2}})=O(h^{r}+{\Delta} t^{2}), $$
(A.65)

for j = 1, ... , n.

Then we rewrite (A.64) as follows

$$ \begin{array}{ll} &\underbrace{\langle (\zeta-1) \widehat{\dot{\theta}^{j}}, (\zeta+ 1) \widehat{\dot{\theta}^{j}}\rangle}_{{J_{1}^{j}}} +\\ &\underbrace{\langle (\zeta-1) \widehat{\dot{\theta}^{j}}, \frac{{\Delta} t}{2}(\widehat{\dot{\mu}^{j}}-\widehat{\dot{\mu}^{j-1}})\rangle+ \langle \frac{{\Delta} t}{2}(\widehat{\dot{\mu}^{j}}+\widehat{\dot{\mu}^{j-1}}),(\zeta+ 1)\widehat{\dot{\theta}^{j}} \rangle}_{{J_{2}^{j}}}\\ &+\underbrace{(\frac{ {\Delta} t}{2})^{2}\langle \widehat{\dot{\mu}^{j}}+\widehat{\dot{\mu}^{j-1}}, \widehat{\dot{\mu}^{j}}-\widehat{\dot{\mu}^{j-1}}) \rangle}_{{J_{3}^{j}}}+\\ & \underbrace{\langle A_{0}({\Delta} t^{3}), (\zeta+ 1) \widehat{\dot{\theta}^{j}}+ \frac{{\Delta} t}{2}(\widehat{\dot{\mu}^{j}}-\widehat{\dot{\mu}^{j-1}})+A_{0}({\Delta} t^{3}) \rangle}_{{J_{4}^{j}}}\\ &+\underbrace{\langle (\zeta-1) \widehat{\dot{\theta}^{j}}+ \frac{{\Delta} t}{2} (\widehat{\dot{\mu}^{j}}+\widehat{\dot{\mu}^{j-1}})+A_{0}({\Delta} t^{3}),A_{0}({\Delta} t^{3}) \rangle}_{{J_{5}^{j}}}. \end{array} $$
(A.66)

Adding those terms (A.62) over time, we obtain a telescopic sum

$$ \sum\limits_{j = 2}^{n}\langle \widehat{\dot{\theta}^{j + 1}}-\zeta \widehat{\dot{\theta}^{j-1}}, \widehat{\dot{\theta}^{j + 1}}+\zeta \widehat{\dot{\theta}^{j-1}}\rangle=||\widehat{\dot{\theta}^{n + 1}}||^{2}+|| \widehat{\dot{\theta}^{n}}||^{2}-\left( ||\widehat{\dot{\theta}^{2}}||^{2}+|| \widehat{\dot{\theta}^{1}}||^{2}\right)+I_{1}, $$
(A.67)

where I1 is a purely imaginary term.

Now we analyze the sum over time of the right-hand side terms

J 1 contribution:

a direct calculation shows that

$$ {J_{1}^{j}}=||\widehat{\dot{\theta}^{j}}||^{2}-||\widehat{\dot{\theta}^{j}}||^{2}+ 2iIm(\langle \zeta \widehat{\dot{\theta}^{j}},\widehat{\dot{\theta}^{j}} \rangle). $$
(A.68)

Thus, the sum over time is telescopic

$$ \sum\limits_{j = 2}^{n}{J_{1}^{j}}=|| \widehat{\dot{\theta}^{n-1}}||^{2}+|| \widehat{\dot{\theta}^{n-2}}||^{2}-|| \widehat{\dot{\theta}^{1}}||^{2}-|| \widehat{\dot{\theta}^{0}}||^{2}+I_{2}, $$
(A.69)

where I2 is a purely imaginary term.

J 2 contribution:

similarly

$${J_{2}^{j}}= 2Re\underbrace{\left( \langle \zeta \widehat{\dot{\theta}^{j}},\frac{{\Delta} t}{2}\widehat{\dot{\mu}^{j}}\rangle+\langle \widehat{\dot{\theta}^{j}},\frac{{\Delta} t}{2}\widehat{\dot{\mu}^{j-1}} \rangle\right)}_{J_{*}}+ 2iIm\left( \langle \frac{{\Delta} t}{2} \widehat{\dot{\mu}^{j-1}},\zeta \widehat{\dot{\theta}^{j}} \rangle+\langle\frac{{\Delta} t}{2}\widehat{\dot{\mu}^{j}},\widehat{\dot{\theta}^{j}} \rangle\right), $$

where

$$ \begin{array}{ll} J_{*}&= 2Re\left( \langle \zeta \widehat{\dot{\theta}^{j}},\widehat{\dot{\theta}^{j + 1}}-\zeta \widehat{\dot{\theta}^{j}}+A_{0}({\Delta} t^{3}) \rangle+\langle \widehat{\dot{\theta}^{j}},\widehat{\dot{\theta}^{j}}-\zeta\widehat{\dot{\theta}^{j-1}}+A_{0}({\Delta} t^{3})\rangle \right)\\ &= 2Re\left( \langle \zeta \widehat{\dot{\theta}^{j}},\widehat{\dot{\theta}^{j + 1}}\rangle-||\widehat{\dot{\theta}^{j}}||^{2}+||\widehat{\dot{\theta}^{j}} ||^{2}-\langle \widehat{\dot{\theta}^{j}},\zeta\widehat{\dot{\theta}^{j-1}}\rangle \right)+A_{0}({\Delta} t^{3})A_{0}(\dot{\theta^{j}})\\ &= 2Re\left( \langle \widehat{\dot{\theta}^{j + 1}},\zeta \widehat{\dot{\theta}^{j}} \rangle-\langle \widehat{\dot{\theta}^{j}},\zeta\widehat{\dot{\theta}^{j-1}}\rangle \right)+{\Delta} tA_{0}({\Delta} t^{2})A_{0}(\dot{\theta^{j}}). \end{array} $$
(A.70)

The sum over time is

$$ \begin{array}{ll} \displaystyle\sum\limits_{j = 2}^{n}{J_{2}^{j}}&= 2Re\left( \langle \widehat{\dot{\theta}^{n + 1}},\zeta \widehat{\dot{\theta}^{n}} \rangle-\langle \widehat{\dot{\theta}^{2}},\zeta\widehat{\dot{\theta}^{1}}\rangle \right)+A_{0}({\Delta} t^{2})A_{0}(\dot{\theta^{j}})+I_{3}\\ &\displaystyle= 2Re\left( \langle \zeta_{m} \widehat{\dot{\theta}_{m}^{n}}+\frac{{\Delta} t}{2}\widehat{\dot{ \mu}_{m}^{n}}+A_{0}({\Delta} t^{3}) ,\zeta \widehat{\dot{\theta}^{n}} \rangle-\langle \widehat{\dot{\theta}^{2}},\zeta\widehat{\dot{\theta}^{1}}\rangle \right)\\ &\quad+A_{0}({\Delta} t^{2})A_{0}(\dot{\theta^{j}})+I_{3} \end{array} $$
(A.71)

where I3 is a purely imaginary term.

For the first step, \(\dot {\theta }_{m}^{0}\) is zero. In addition (A.54), (57) and Plancherel theorem shows that

$$ ||\dot{\theta}^{1}||_{l^{2}}^{2}= ||\widehat{\dot{\theta}^{1}}||^{2}=||A_{0}({\Delta} t^{2})||^{2}=O({\Delta} t^{4}). $$
(A.72)

For the second step, consider (A.61) and approximation (A.65) to get

$$||\dot{\theta}^{2}||_{l^{2}}^{2}\leq O((h^{r}+{\Delta} t^{2})^{2}), $$

which by induction implies that \(||\dot {\theta }^{n}||=O(h^{r}+{\Delta } t^{2})\).

Considering only real terms in (A.71) and approximation (A.65) for the nonlinear error we obtain

$$ \begin{array}{ll} \displaystyle|Re(\sum\limits_{j = 2}^{n}{J_{2}^{j}})|&\displaystyle\leq 2|| \zeta_{m} \widehat{\dot{\theta}_{m}^{n}}+\frac{{\Delta} t}{2}\widehat{\dot{ \mu}_{m}^{n}}+A_{0}({\Delta} t^{3})|| \cdot||\zeta \widehat{\dot{\theta}^{n}}|| +C(h^{r}{\Delta} t^{2}+{\Delta} t^{4})\\ &\displaystyle\leq O(h^{r}+{\Delta} t^{2})O(h^{r}+{\Delta} t^{2})+O((h^{r}+{\Delta} t^{2})^{2})=O((h^{r}+{\Delta} t^{2})^{2}). \end{array} $$
(A.73)

J 3 contribution:

a direct calculation shows

$$ {J_{3}^{j}}=(\frac{{\Delta} t}{2})^{2}(||\widehat{\dot{\mu}^{j}}||^{2}-||\widehat{ \dot{\mu}^{j-1}}||^{2})+(\frac{{\Delta} t}{2})^{2}2iIm(\langle\widehat{\dot{ \mu}^{j-1}},\widehat{\dot{\mu}^{j}}\rangle). $$
(A.74)

Then, the sum over time is also telescopic

$$ \sum\limits_{j = 2}^{n}{J_{3}^{j}}=(\frac{{\Delta} t}{2})^{2}(||\widehat{\dot{\mu}^{j}}||^{2}-|| \widehat{\dot{\mu}^{j-1}}||^{2})+I_{4}, $$
(A.75)

where I4 is a purely imaginary term.

J 4, J 5 contribution:

by induction and approximation (A.65) we find that \((\zeta + 1) \widehat {\dot {\theta }^{j}}+ \frac {{\Delta } t}{2}(\widehat {\dot {\mu }^{j}}-\widehat {\dot {\mu }^{j-1}})+A_{0}({\Delta } t^{3})=A_{0}(\dot {\theta }^{j}+{\Delta } t^{3})\), then using Cauchy-Schwarz, triangle inequalities and Plancherel theorem we get

$$ |J_{4}|\leq {\Delta} t^{3}||A_{0}(\dot{\theta}^{j}+{\Delta} t^{3})||_{l^{2}}\leq {\Delta} t^{3}O(h^{r}+{\Delta} t^{3}). $$
(A.76)

Similarly,

$$ |J_{5}|={\Delta} t^{3}O(h^{r}+{\Delta} t^{3}). $$
(A.77)

Thus, the sum over time is

$$ |\sum\limits_{j = 2}^{n}{J_{4}^{j}}+{J_{5}^{j}}|=O(h^{r}{\Delta} t^{2}+{\Delta} t^{4}). $$
(A.78)

With this (A.69), (A.73), (A.75), (A.78) information and considering the real part of (A.67) we write

$$ \begin{array}{ll} ||\widehat{\dot{\theta}^{n + 1}}||^{2}+|| \widehat{\dot{\theta}^{n}}||^{2}-\left( ||\widehat{\dot{\theta}^{2}}||^{2}+|| \widehat{\dot{\theta}^{1}}||^{2}\right)& \leq\\ & || \widehat{\dot{\theta}^{n-1}}||^{2}+|| \widehat{\dot{\theta}^{n-2}}||^{2}-|| \widehat{\dot{\theta}^{1}}||^{2}-|| \widehat{\dot{\theta}^{0}}||^{2}\\ &+O((h^{r}+{\Delta} t^{2})^{2})+O(h^{r}{\Delta} t^{2}+{\Delta} t^{4}). \end{array} $$
(A.79)

Therefore,

$$||\dot{\theta}^{n + 1}||_{l^{2}}^{2}=O((h^{r}+{\Delta} t^{2})^{2})\Rightarrow ||\dot{\theta}^{n + 1}||_{l^{2}}\leq C(h^{r}+{\Delta} t^{2}). $$

As a consequence, the upper bound holds for a longer time (j = n + 1) than T (31), and T = T as desired.

1.6 A.6 Here we show the conservation of the quantities (72) under Airy Flow over time

M1:

k = θs/sα is a perfect derivative of a periodic function. The result follows by the Fundamental Theorem of Calculus.

M2:

Observe that

$$ I:=\frac{\partial M2}{\partial t}=\int 2kk_{t} ds. $$
(A.80)

We know that for airy flow

$$ k_{t}=k_{sss}+ 3\frac{k^{2}k_{s}}{2}=(k_{ss}+\frac{k^{3}}{2})_{s}, $$
(A.81)

then

$$ I=\int 2kk_{sss}+ 3k^{3}k_{s} ds= 2\int k k_{sss}ds+\int \frac{\partial (\frac{3}{4}k^{4})}{\partial s}ds= 2\int k k_{sss} ds. $$
(A.82)

Again, since (kkss)s = kksss + kssks we have

$$ \int k k_{sss} ds=-\int k_{s}k_{ss} ds=-\frac{1}{2}\int \frac{\partial {k_{s}^{2}}}{\partial s}ds= 0\Rightarrow I = 0, $$
(A.83)

and M2 is conserved over time.

M3:

Similarly, using integration by parts and periodicity of the functions we obtain

$$ \begin{array}{ll} &\displaystyle J:=\frac{\partial M3}{\partial t}=\int (k_{s} k_{st}-\frac{1}{2}k^{3}k_{t} )ds =\int [-k_{ss}-\frac{1}{2}k^{3}]k_{t}ds\\ &\displaystyle=-\int (k_{ss}+\frac{1}{2}k^{3})(k_{ss}+\frac{k^{3}}{2})_{s}ds=\frac{-1}{2}\int\frac{\partial (k_{ss}+\frac{k^{3}}{2})^{2}}{\partial s} ds= 0. \end{array} $$
(A.84)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco-de-Leon, M., Lowengrub, J. Boundary integral methods for dispersive equations, Airy flow and the modified Korteweg de Vries equation. Adv Comput Math 45, 99–135 (2019). https://doi.org/10.1007/s10444-018-9607-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-018-9607-7

Keywords

Mathematics Subject Classification (2010)

Navigation