Skip to main content
Log in

Numerical simulation of two-phase flow of immiscible fluids by the finite element, discontinuous Galerkin and level-set methods

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The subject of the paper is the numerical simulation of two-phase flow of immiscible fluids. Their motion is described by the incompressible Navier-Stokes equations with different constant density and viscosity for different fluids. The interface between the fluids is defined with the aid of the level-set method using a transport first-order hyperbolic equation. The Navier-Stokes system is equipped with initial and boundary conditions and transmission conditions on the interface between the two fluids. This system is discretized by the Taylor-Hood P2/P1 conforming finite elements in space and the second-order BDF method in time. The transport level-set problem is solved with the aid of the space-time discontinuous Galerkin method. Numerical experiments demonstrate that the developed method is accurate and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, G.R., Moore, D.W.: The rise and distortion of a two-dimensional gas bubble in an inviscid liquid. Phys. Fluids A 1(9), 1451–1459 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bänsch, E.: Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numer. Math. 88(2), 203–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett, J.W., Garcke, H., Nürnberg, R.: Eliminating spurious velocities with a stable approximation of viscous incompressible two-phase Stokes flow. Comput. Meth. Appl. Mech. Eng. 267, 323–359 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: CutFEM: discretizing geometry and partial differential equations. Int. J. Numer. Meth. Engng 104, 472–501 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bezchlebová, E., Dolejsí, V., Feistauer, M.: Discontinuous Galerkin method for the solution of a transport level-set problem. Comput. Math. Appl. 72, 455–480 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caiden, R., Fedkiw, R.P., Anderson, C.: A numerical method for two-phase flow consisting of separate compressible and incompressible regions. J. Comp. Phys. 166(1), 1–27 (2001)

    Article  MATH  Google Scholar 

  7. Chessa, J., Belytschko, I.: An extended finite element method for two-phase fluids. J. Appl. Mech 70, 10–17 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, 1st edn. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  9. Dellacherie, S.: Numerical resolution of a potential diphasic low Mach number system. J. Comp. Phys. 223(1), 151–187 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dierkes, U.: Minimal Surfaces. Springer, New York (1992)

    Book  MATH  Google Scholar 

  11. Dolejsí, V., Feistauer, M.: Discontinuous Galerkin Method - Analysis and Applications to Compressible Flow. Springer, Cham (2015)

    MATH  Google Scholar 

  12. Gallot, S., Hulin, D.: Riemannian Geometry, 3rd edn. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  13. Gittel, H.-P., Günther, M., Ströhmer, G., Veselý, J.: Remarks on a nonlinear transport problem. J. Diff. Eqs. 256(3), 125–132 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Glimm, J., Marchesin, D., Mcbryan, O.: A numerical method for two phase flow with an unstable interface. J. Comp. Phys. 39(1), 179–200 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp. Phys. 39(1), 201–225 (1981)

    Article  MATH  Google Scholar 

  16. Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., Tobiska, L.: Quantitative benchmark computations of two-dimensional bubble dynamics. Int. J. Numer. Meth. Fluids 60(11), 1259–1288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hysing, S.: Numerical simulation of immiscible fluids with FEM level set techniques, PhD thesis (2007)

  18. Osher, S.J., Fedkiw, R.P.: Level set methods: an overview and some recent results. J. Comput. Phys. 169, 463–502 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Penel, Y.: Existence of global solutions to the 1D abstract bubble vibration model. Differential Integral Equations 26(1–2), 59–80 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Penel, Y., Dellacherie, S., Lafitte, O.: Theoretical study of an abstract bubble vibration model. Zeitschrift für Analysis und ihre Anwendungen 32(1), 19–36 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  22. Smolianski, A.: Finite-element/level-set/operator-splitting (FELSOS) approach for computing two-fluid unsteady flows with free moving interfaces. Int. J. Numer. Meth. Fluids 48, 231–269 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stewart, H.B., Wendroff, B.: Two-phase flow: models and methods. J. Comp. Phys. 56(3), 363–409 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sváček, P.: Numerical simulation of free-surface flows with surface tension, programs and algorithms of numerical mathematics 17. Institute of mathematics AS CR, Prague, 207–214 (2015)

  25. Sváček, P.: On approximation of non-Newtonian fluid flow by the finite element method. J. Comput. Appl. Math. 218(1), 167–174 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Taylor, C., Hood, P.: A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  27. Unverdi, S.O., Tryggvason, G.: A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comp. Phys. 100(1), 25–37 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vít Dolejší.

Additional information

Communicated by: Pavel Solin

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the grant No. 17-01747S of the Czech Science Foundation. The research of E. Bezchlebová was also partially supported by the Student Faculty Grant (SFG) of the Faculty of Mathematics and Physics of the Charles University in Prague. The research of P. Sváček was supported by the grant of the Ministry of Education of the Czech Republic No. CZ.02.1.01/0.0/0.0/16_019/0000778.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezchlebová, E., Dolejší, V., Feistauer, M. et al. Numerical simulation of two-phase flow of immiscible fluids by the finite element, discontinuous Galerkin and level-set methods. Adv Comput Math 45, 1993–2018 (2019). https://doi.org/10.1007/s10444-019-09681-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-019-09681-1

Keywords

Mathematics Subject Classification (2010)

Navigation