Skip to main content
Log in

A conservative compact finite difference scheme for the coupled Schrödinger-KdV equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a conservative compact finite difference scheme is presented to numerically solve the coupled Schrödinger-KdV equations. The analytic solutions of the coupled equations have some invariants such as the number of plasmons, the number of particles, and the energy of oscillations, and we proved that the compact difference scheme preserves those invariants in discrete sense. Optimal order convergence rate of the proposed linearized compact scheme was analyzed. Numerical experiments on model problems show that the scheme is of high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdou, M.A., Soliman, A.A.: New applications of variational iteration method. Phys. D Nonlin. Phenom. 211, 161–182 (2005)

    Article  MathSciNet  Google Scholar 

  2. Alomari, A.K., Noorani, M.S.M., Nazar, R.: Comparison between the homotopy analysis method and homotopy perturbation method to solve coupled Schrödinger-KdV equation. J. Appl. Math. Comput. 31(1-2), 1–12 (2009)

    Article  MathSciNet  Google Scholar 

  3. Amorim, P., Figueira, M.: Convergence of a numerical scheme for a coupled Schrödinger-KdV system. Rev. Mat. Complut. 26, 409–426 (2013)

    Article  MathSciNet  Google Scholar 

  4. Appert, K., Vaclavik, J.: Dynamics of coupled solitons. Phys. Fluids 20, 1845–1849 (1977)

    Article  Google Scholar 

  5. Appert, K., Vaclavik, J.: Instability of coupled Langmuir and ion-acoustic solitons. Phys. Lett. A 67, 39–41 (1978)

    Article  MathSciNet  Google Scholar 

  6. Bai, D., Zhang, L.: The finite element method for the coupled Schrödinger-KdV equations. Phys. Lett. A 373, 2237–2244 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bao, W., Cai, Y.: Optimal error estmiates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation. Math. Comp. 82, 99–128 (2013)

    Article  MathSciNet  Google Scholar 

  8. Brodskii, Y., Litvak, A.G., Nechuev, S.I., Slutsker, Y.Z.: Observation of the modulation instability of Langmuir oscillations. J. Exp. Theor. Phys. Lett. 45, 217 (1987)

    Google Scholar 

  9. Chippada, S., Dawson, C.N., Martínez, M. L., Wheeler, M.F.: Finite element approximations to the system of shallow water equations, Part II: Discrete time a priori error estimates. SIAM J. Numer. Anal. 36, 226–250 (1999)

    Article  MathSciNet  Google Scholar 

  10. Davis, P.J.: Circulant Matrices: Second Edition. Reprinted by the American Mathematica Society, Providence (2012)

    Google Scholar 

  11. Dawson, C.N., Martínez, M.L.: A characteristic-Galerkin approximation to a system of shallow water equations. Numer. Math. 86, 239–256 (2000)

    Article  MathSciNet  Google Scholar 

  12. Duràn, A., Lopez-Marcos, M.A.: Conservative numerical methods for solitary wave interactions. J. Phys. A 36, 7761–7770 (2003)

    Article  MathSciNet  Google Scholar 

  13. Gao, Z., Xie, S.: Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations. Appl. Numer. Math. 61(4), 593–614 (2011)

    Article  MathSciNet  Google Scholar 

  14. Gibbons, J., Thornhill, S.G., Wardrop, M.J., ter Haar, D.: On the theory of Langmuir solitons. J. Plasma Phys. 17, 153–170 (1977)

    Article  Google Scholar 

  15. Golbabai, A., Safdari-Vaighani, A.: A meshless method for numerical solution of the coupled Schrödinger-KdV equations. Computing 92(3), 225–242 (2011)

    Article  MathSciNet  Google Scholar 

  16. Guo, B., Chen, F.: Finite-dimensional behavior of global attractors for weakly damped and forced KdV equations coupling with nonlinear schrödinger equations. Nonlinear Anal. Theory Methods Appl. 29, 569–584 (1997)

    Article  Google Scholar 

  17. Hojo, H.: Theory for two-dimensional stability of coupled Langmuir and ion-acoustic solitary waves. J. Phys. Soc. Japan 44(2), 643–651 (1978)

    Article  MathSciNet  Google Scholar 

  18. Hu, X., Chen, S., Chang, Q.: Fourth-order compact difference schemes for 1D nonlinear Kuramoto-Tsuzuki equation. Numer. Methods Partial Diff. Equ. 31(6), 2080–2109 (2015)

    Article  MathSciNet  Google Scholar 

  19. Kaya, D., El-Sayed, M.: On the solution of the coupled Schrödinger-KdV equation by the decomposition method. Phys. Lett. A 313, 82–88 (2003)

    Article  MathSciNet  Google Scholar 

  20. Kucukarslan, S.: Homotopy perturbation method for coupled Schrödinger-KdV equation. Nonlinear Anal. Real World Appl. 10, 2264–2271 (2009)

    Article  MathSciNet  Google Scholar 

  21. Li, J., Sun, Z.Z., Zhao, X.: A three level linearized compact difference scheme for the Cahn-Hilliard equation. Sci. China Math. 55(4), 805–826 (2012)

    Article  MathSciNet  Google Scholar 

  22. Pereira, N.R., Sudan, R.N., Denavit, J.: Numerical simulations of one-dimensional solitons. Phys. Fluids 20, 271–281 (1977)

    Article  Google Scholar 

  23. Schmidt, G.: Stability of Envelope Solitons. Phys. Rev. Lett. 34, 724–726 (1975)

    Article  Google Scholar 

  24. Wang, T.: Optimal point-wise error estimate of a compact difference scheme for the coupled Gross-Pitaevskii equations in one dimension. J. Sci. Comput. 59(1), 158–186 (2014)

    Article  MathSciNet  Google Scholar 

  25. Wang, T., Guo, B., Xu, Q.: Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J. Comput. Phys. 243, 382–399 (2013)

    Article  MathSciNet  Google Scholar 

  26. Xie, S., Li, G., Yi, S.: Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schrödinger equation. Comput. Methods Appl. Mech. Engrg. 198, 1052–1060 (2009)

    Article  MathSciNet  Google Scholar 

  27. Xie, S., Yi, S., Kwon, T.: Fourth-order compact difference alternating direction implicit schemes for telegraph equations. Comput. Phys. Commun. 183(3), 552–569 (2012)

    Article  MathSciNet  Google Scholar 

  28. Zhou, Y.L.: Applications of Discrete Functional Analysis of Finite Diffrence Method. International Academic Publishers, New York (1990)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the reviewers for their valuable comments and suggestions on this paper.

Funding

The first author (Xie) was supported partially by the NNSF of China grants (11871443) and Fundamental Research Funds for the Central Universities (201562012), and the second author (Yi) was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2014R1A1A2055548, 2018R1D1A1B07041879).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Cheol Yi.

Additional information

Communicated by: Aihui Zhou

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Yi, SC. A conservative compact finite difference scheme for the coupled Schrödinger-KdV equations. Adv Comput Math 46, 1 (2020). https://doi.org/10.1007/s10444-020-09758-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09758-2

Keywords

Mathematics subject classification (2010)

Navigation