Skip to main content
Log in

A divergence-free weak virtual element method for the Navier-Stokes equation on polygonal meshes

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present a divergence-free weak virtual element method for the Navier-Stokes equation on polygonal meshes. The velocity and the pressure are discretized by the H(div) virtual element and discontinuous piecewise polynomials, respectively. An additional polynomial space that lives on the element edges is introduced to approximate the tangential trace of the velocity. The velocity at the discrete level is point-wise divergence-free and thus the exact mass conservation is preserved in the discretization. Given suitable data conditions, the well-posedness of the discrete problem is proved and a rigorous error analysis of the method is derived. The error with respect to a mesh dependent norm for the velocity depends on the smoothness of the velocity and the approximation of the load term. A series of numerical experiments are reported to validate the performance o f the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer Anal. 52(1), 386–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonietti, P.F., Beirão da Veiga, L., Scacchi, S., Verani, M.: A C1, virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer Anal. 54(1), 34–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antonietti, P.F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28(2), 387–407 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Artioli, E., de Miranda, S., Lovadina, C., Patruno, L.: A stress/displacement virtual element method for plane elasticity problems. Comput. Methods Appl. Mech Engrg. 325, 155–174 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50(3), 879–904 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math Models Methods Appl. Sci. 23(1), 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirão da Veiga, L., Brezzi, F., Marini, L. D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: H(div) and H(curl)-conforming virtual element methods. Numer. Math. 133(2), 303–332 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math. Model. Numer Anal. 50(3), 727–747 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beirão da Veiga, L., Dassi, F., Vacca, G.: The Stokes complex for virtual elements in three dimensions. Math. Models Methods Appl. Sci. 30(3), 477–512 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer Anal. 51(2), 509–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier-S,tokes problem on polygonal meshes. SIAM J. Numer Anal. 56 (3), 1210–1242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Beirão da Veiga, L., Mora, D., Vacca, G.: The Stokes complex for virtual elements with application to Navier-Stokes flows. J. Sci. Comput. 81 (2), 990–1018 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications, volume 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  15. Brezzi, F., Falk, R.S., Marini, L.D.: Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer Anal. 48(4), 1227–1240 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cáceres, E., Gatica, G.N.: A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer Anal. 37(1), 296–331 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cáceres, E., Gatica, G.N., Sequeira, F.A.: A mixed virtual element method for quasi-Newtonian Stokes flows. SIAM J. Numer Anal. 56(1), 317–343 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cangiani, A., Georgoulis, E.H., Pryer, T., Sutton, O.J.: A posteriori error estimates for the virtual element method. Numer Math. 137(4), 857–893 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (3), 1317–1354 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Cao, S., Chen, L.: Anisotropic error estimates of the linear virtual element method on polygonal meshes. SIAM J. Numer Anal. 56(5), 2913–2939 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, L.: i FEM: an innovative finite element methods package in MATLAB. Preprint, University of Maryland, 2008 (2008)

  22. Chen, L., Huang, J.: Some error analysis on virtual element methods. Calcolo 55(1), Art. 5, 23 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, L., Wang, F.: A divergence free weak virtual element method for the Stokes problem on polytopal meshes. J. Sci Comput. 78(2), 864–886 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, L., Wei, H., Wen, M.: An interface-fitted mesh generator and virtual element methods for elliptic interface problems. J. Comput. Phys. 334, 327–348 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations. J. Sci Comput. 31(1-2), 61–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dawson, C., Sun, S., Wheeler, M.F.: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Engrg. 193(23-26), 2565–2580 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Di Pietro, D.A.: J. Droniou. A hybrid high-order method for Leray-L,ions elliptic equations on general meshes. Math Comp. 86(307), 2159–2191 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods, volume 69 of Mathematiqueś & Applications (Berlin) [Mathematics & Applications] Springer Heidelberg (2012)

  29. Erturk, E., Corke, T.C., Gokcol, C.: Numerical solutions of 2-,D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer Methods Fluids 48, 747–775 (2005)

    Article  MATH  Google Scholar 

  30. Falk, R.S., Neilan, M.: Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J. Numer. Anal. 51 (2), 1308–1326 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fu, G.: An explicit divergence-free DG method for incompressible flow. Comput. Methods Appl. Mech. Engrg. 345, 502–517 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fumagalli, A., Keilegavlen, E.: Dual virtual element method for discrete fractures networks. SIAM J. Sci Comput. 40(1), B228–B258 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gain, A.L., Talischi, C., Paulino, G.H.: On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 282, 132–160 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gatica, G.N., Munar, M., Sequeira, F.A.: A mixed virtual element method for a nonlinear Brinkman model of porous media flow. Calcolo 55(2), Art.21, 36 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gatica, G. N., Munar, M., Sequeira, F.A.: A mixed virtual element method for the Navier–Stokes equations. Math Models Methods Appl. Sci. 28 (14), 2719–2762 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations, volume 5 of Springer Series in Computational Mathematics Springer-Verlag, Berlin. Theory and algorithms (1986)

  37. Guzmán, J., Neilan, M.: Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comp. 83(285), 15–36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59(3), 492–544 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kanschat, G., Schö, tzau, D.: Energy norm a posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations. Internat. J. Numer Methods Fluids 57(9), 1093–1113 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Layton, W.: A connection between subgrid scale eddy viscosity and mixed methods. Appl. Math. Comput. 133(1), 147–157 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Lederer, P.L., Lehrenfeld, C., Schöberl, J.: Hybrid discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part I SIAM J. Numer. Anal. 56(4), 2070–2094 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lederer, P.L., Lehrenfeld, C., Schöberl, J.: Hybrid discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part II. ESAIM Math. Model. Numer. Anal. 53(2), 503–522 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lehrenfeld, C., Schö, berl, J.: High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows. Comput. Methods Appl. Mech Engrg. 307, 339–361 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu, X., Chen, Z.: The nonconforming virtual element method for the Navier-Stokes equations. Adv. Comput. Math. 45(1), 51–74 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Liu, X., Li, J., Chen, Z.: A nonconforming virtual element method for the Stokes problem on general meshes. Comput. Methods Appl. Mech Engrg. 320, 694–711 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu, X., Li, R., Nie, Y.: A divergence-free reconstruction of the nonconforming virtual element method for the Stokes problem. Comput. Methods Appl. Mech Engrg. 372, 113351, 21 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rhebergen, S., Wells, G.N.: A hybridizable discontinuous Galerkin method for the Navier–S,tokes equations with pointwise divergence-free velocity field. J. Sci Comput. 76(3), 1484–1501 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Schroeder, P.W., Lube, G.: Divergence-free H(div)-FEM for time-dependent incompressible flows with applications to high Reynolds number vortex dynamics. J. Sci. Comput. 75(2), 830–858 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Temam, R.: Navier-Stokes equations, volume 2 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York, revised edition (1979)

  51. Vacca, G., Beirão da Veiga, L.: Virtual element methods for parabolic problems on polygonal meshes. Numer Methods Partial Differential Equations 31 (6), 2110–2134 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Vassilev, D., Yotov, I.: Coupling Stokes-Darcy flow with transport. SIAM J. Sci. Comput. 31(5), 3661–3684 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang, G., Mu, L., Wang, Y., He, Y.: A pressure-robust virtual element method for the Stokes problem. Comput. Methods Appl. Mech Engrg. 382, 113879 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, G., Wang, F., Chen, L., He, Y.: A divergence free weak virtual element method for the Stokes-Darcy problem on general meshes. Comput. Methods Appl. Mech Engrg. 344, 998–1020 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wang, G., Wang, Y., He, Y.: A posteriori error estimates for the virtual element method for the Stokes problem. J. Sci. Comput., 84, 2 (2020)

  56. Wang, J., Wang, Y., Ye, X.: A robust numerical method for Stokes equations based on divergence-free H(div), finite element methods. SIAM J. Sci Comput. 31(4), 2784–2802 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wang, J., Ye, X.: New finite element methods in computational fluid dynamics by H(div) elements. SIAM J. Numer Anal. 45(3), 1269–1286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl Math. 241, 103–115 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. Wang, Y., Wang, G.: A least-squares virtual element method for second-order elliptic problems. Comput. Math Appl. 80(8), 1873–1886 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zeidler, E.: Nonlinear functional analysis and its applications, vol. I. Springer-Verlag, New York (1986)

    Book  MATH  Google Scholar 

  61. Zhang, S.: Divergence-free finite elements on tetrahedral grids for k ≥ 6. Math. Comp. 80(274), 669–695 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zheng, H., Hou, Y., Shi, F., Song, L.: A finite element variational multiscale method for incompressible flows based on two local Gauss integrations. J Comput. Phys. 228(16), 5961–5977 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the two anonymous reviewers for giving them many valuable suggestions which improved the quality of this paper.

Funding

The work of Gang Wang was supported by the Fundamental Research Funds for the Central Universities (No. G2019KY05104) and National Natural Science Foundation of China (No. 12001433). The work of Feng Wang was supported by National Natural Science Foundation of China (Nos. 12071227, 11871281) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 20KJA110001). The work of Yinnian He was supported by the Major Research and Development Program of China (No. 2016YFB0200901) and National Natural Science Foundation of China (No. 11771348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Lourenco Beirao da Veiga

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wang, F. & He, Y. A divergence-free weak virtual element method for the Navier-Stokes equation on polygonal meshes. Adv Comput Math 47, 83 (2021). https://doi.org/10.1007/s10444-021-09909-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-021-09909-z

Keywords

Navigation