Skip to main content
Log in

Unconditionally optimal error estimates of a linearized weak Galerkin finite element method for semilinear parabolic equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider the unconditionally optimal error estimates of the linearized backward Euler scheme with the weak Galerkin finite element method for semilinear parabolic equations. With the error splitting technique and elliptic projection, the optimal error estimates in L2-norm and the discrete H1-norm are derived without any restriction on the time stepsize. Numerical results on both polygonal and tetrahedral meshes are provided to illustrate our theoretical conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achdou, Y., Guermond, J.L.: Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 37, 799–826 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akrivis, G., Li, B., Lubich, C.: Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations. Math. Comp. 86, 1527–1552 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Al-Taweel, A., Hussain, S., Wang, X.: A stabilizer free weak Galerkin finite element method for parabolic equation. J. Comput. Appl. Math. 392, 113373 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. An, R.: Optimal error estimates of linearized crank-nicolson Galerkin method for landau-lifshitz equation. J. Sci. Comput. 69, 1–27 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Béatrice, R.: discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation. Society for industrial and applied mathematics (2008)

  6. Chen, L.: iFEM: an integrated finite element methods package in MATLAB. https://github.com/lyc102

  7. Chen, L., Wang, J., Ye, X.: A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems. J. Sci. Comput. 59, 496–511 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elliott, C., Larsson, S.: A finite element model for the time-dependent joule heating problem. Math. Comp. 64, 1433–1453 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao, F., Mu, L.: On L2, error estimate for weak Galerkin finite element methods for parabolic problems. J. Comput. Math. 32, 195–204 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, H., Li, B., Sun, W.: Optimal error estimates of linearized crank-nicolson Galerkin FEMs for the time-dependent ginzbur-landau equations in superconductivity. SIAM J. Numer. Anal. 52, 1183–1202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guan, Z., Wang, J., Liu, Y., Nie, Y.: Unconditionally optimal convergence of a linearized Galerkin FEM for the nonlinear time-fractional mobile/immobile transport equation. Appl. Numer. Math. 172, 133–156 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guan, Z., Wang, J., Nie, Y.: Unconditionally optimal error estimates of two linearized Galerkin FEMs for the two-dimensional nonlinear fractional rayleigh-stokes problem. Comput. Math. Appl. 93, 78–93 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. He, Y.: The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data. Math. Comp. 77, 2097–2124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu, X., Mu, L., Ye, X.: A weak Galerkin finite element method for the Navier-Stokes equations. J. Comput. Appl. Math. 362, 614–625 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kunstmann, P., Li, B., Lubich, C.: Runge–Kutta, time discretization of nonlinear parabolic equations studied via discrete maximal parabolic regularity. Found. Comput. Math 18, 1109–1130 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, B., Gao, H., Sun, W.: Unconditionally optimal error estimates of a Crank-Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 53, 933–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, B., Ma, S.: A high-order exponential integrator for nonlinear parabolic equations with nonsmooth initial data. J. Sci. Comput. 87(23) (2021)

  19. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, B., Yang, J., Zhou, Z.: Arbitrarily high-order exponential cut-off methods for preserving maximum principle of parabolic equations. SIAM J. Sci. Comput. 42(6), A3957–A3978 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, D., Nie, Y., Wang, C.: Superconvergence of numerical gradient for weak Galerkin finite element methods on nonuniform Cartesian partitions in three dimensions. Comput. Math. Appl. 78, 905–928 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, D., Wang, C., Wang, J.: Superconvergence of the gradient approximation for weak Galerkin finite element methods on nonuniform rectangular partitions. Appl. Numer. Math. 150, 396–417 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, D., Wang, C., Wang, J.: A primal–dual finite element method for transport equations in non-divergence form. J. Comput. Appl. Math. 412, 114313 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, D., Wang, J., Zhang, J.: Unconditionally convergent L1-Galerkin FEMs for nonlinear time-fractional Schrö,dinger equations. SIAM. J. Sci. Comput. 39, A3067–A3088 (2017)

    Article  MATH  Google Scholar 

  26. Li, D., Wu, C., Zhang, Z.: Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction. J. Sci. Comput. 80, 403–419 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, D., Zhang, J., Zhang, Z.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction-subdiffusion equations. J. Sci. Comput. 76, 848–866 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Q., Wang, J.: Weak Galerkin finite element methods for parabolic equations. Numer. Meth. Part. D. E. 29, 2004–2024 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lin, R., Ye, X., Zhang, S., Zhu, P.: A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems. SIAM J. Numer. Anal. 56, 1482–1497 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, X., Li, J., Chen, Z.: A weak Galerkin finite element method for the Navier-Stokes equations. J. Comput. Appl. Math. 333, 442–457 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, Y., Nie, Y.: A priori and a posteriori error estimates of the weak Galerkin finite element method for parabolic problems. Comput. Math. Appl. 99, 73–83 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, Y., Wang, G., Wu, M., Nie, Y.: A recovery-based a posteriori error estimator of the weak Galerkin finite element method for elliptic problems. J. Comput. Appl. Math. 406, 113926 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mu, L.: Weak Galerkin based a posteriori error estimates for second order elliptic interface problems on polygonal meshes. J. Comput. Appl. Math. 361, 413–425 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mu, L., Wang, J., Xiu, Y., Zhang, S.: A weak Galerkin finite element method for the Maxwell equations. J. Sci. Comput. 65, 363–386 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods on polytopal meshes. Int J. Numer. Anal. Mod. 12, 31–53 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Mu, L., Wang, J., Ye, X., Zhao, S.: A new weak Galerkin finite element method for elliptic interface problems. J. Comput. Phys. 325, 157–173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pietro, D., Droniou, J.: A hybrid high-order method for leray-lions elliptic equations on general meshes. Math. Comp. 307, 2159–2191 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Shi, D., Yan, F., Wang, J.: Unconditional superconvergence analysis of a new mixed finite element method for nonlinear sobolev equation. Appl. Math. Comput. 274, 182–194 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Shields, S., Li, J., Machorro, E.: Weak Galerkin methods for time-dependent Maxwell’s equations. Comput. Math. Appl. 74, 2106–2124 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Si, Z., Wang, J., Sun, W.: Unconditional stability and error estimates of modified characteristics FEMs for the Navier-Stokes equations. Numer. Math. 134, 139–161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sun, W., Wang, J.: Optimal error analysis of Crank-Nicolson schemes for a coupled nonlinear Schrö,dinger system in 3D. J. Comput. Appl. Math. 317, 685–699 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. da Veiga, L.B., Lovadinab, C., Morac, D.: A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Method. Appl. Mech. Eng. 1, 327–346 (2015)

    Article  MathSciNet  Google Scholar 

  43. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comp. 83, 2101–2126 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, J., Zhai, Q., Zhang, R., Zhang, S.: A weak Galerkin finite element scheme for the Cahn-Hilliard equation. Math. Comp. 88, 211–235 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, R., Zhang, R., Wang, X., Jia, J.: Polynomial preserving recovery for a class of weak Galerkin finite element methods. J. Comput. Appl. Math. 362, 528–539 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, R., Zhang, R., Zang, X., Zhang, Z.: Supercloseness analysis and polynomial preserving recovery for a class of weak Galerkin, methods. Numer. Meth. Part. D. E. 34, 317–335 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, X., Zhai, Q., Zhang, R., Zhang, S.: The weak Galerkin finite element method for solving the time-dependent integro-differential equations. Adv. Appl. Math. Mech. 12(1), 164–188 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wheeler, M.: A priori l2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yang, Y., Jiang, Y.: Unconditional optimal error estimates of linearized backward Euler Galerkin FEMs for nonlinear schrödinger-helmholtz equations. Numer. Algor. 86, 1495–1522 (2021)

    Article  MATH  Google Scholar 

  51. Zhang, T.: A posteriori error analysis for the weak Galerkin method for solving elliptic problems. Int. J. Comp. Meth-Sing. 15, 1850075 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, W., Hu, L., Yang, Z., Nie, Y.: Error estimates for the laplace interpolation on convex polygons. Int. J. Numer. Anal. Mod. 18, 324–338 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for their value comments on the original manuscript, which improve this paper greatly. The authors also thank Gang Wang and Mengyao Wu for providing the uniform polygonal meshes.

Funding

This research is supported by the National Natural Science Foundation of China (No.11971386) and the National Key R&D Program of China(No.2020YFA0713603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Nie.

Ethics declarations

Ethics approval

The submitted work is original and have not been published elsewhere in any form or language.

Conflict of interests

The authors declare no competing interests.

Additional information

Communicated by: Paul Houston

Author contribution

The authors all contribute much effort to this work.

Data availability and materials

The data and materials of the current study are available from the corresponding author upon request.

Code availability

The source code used to generate all data for the current study is available from the corresponding author upon request.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Guan, Z. & Nie, Y. Unconditionally optimal error estimates of a linearized weak Galerkin finite element method for semilinear parabolic equations. Adv Comput Math 48, 47 (2022). https://doi.org/10.1007/s10444-022-09961-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09961-3

Keywords

Mathematics Subject Classification (2010)

Navigation